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Uber die Greenschen Funktionen des Zylinders und der Kugel

Von WALTER FRANZ
Aus dem Institut fiir Theoretische Physik der Universitat Munster i. W.
(Z. Naturforschg. 9a, 705—716 [1954]; eingegangen am 15. Mirz 1954)

Die Kugelfunktions-Reihen fiir die Greenschen Funktionen werden der Watson-Trans-
formation unterworfen, dabei jedoch ein der geometrisch-optischen Welle entsprechendes
Integral abgespalten. Auf diese Weise erhilt man, abgesehen von einer nunmehr genaue-
ren Bestimmung der Koeffizienten, gerade die frither von Deppermann und dem Verf.
(fir den Spezialfall einer ebenen Primirwelle) angegebene Aufspaltung in einen geome-
trisch-optischen und einen Kriechwellen-Anteil, und damit eine bis zu ziemlich kleinen
Objekten bequem zu handhabende semi-asymptotische Losung des Beugungsproblems.
Die Kriechwellen erweisen sich identisch mit den in der Theorie der drahtlosen Telegraphie
wichtigen Residuenwellen nach Watson und Van der Pol-Bremmer. — Die mittels
der Watson-Transformation bestimmten Erregungsstiarken der Kriechwellen lassen sich
auf beliebig gekriimmte Flichen ubertragen; dies gestattet eine semi-asymptotische Be-
handlung der Beugung am beliebigen (kantenfreien)Objekt mittels der Integralgleichungs-

methode.

m die Beugung von Schall und elektromagneti-

schen Wellen an groflen Zylindern oder Kugeln
zu berechnen, bedient man sich bis'jetzt zweier ver-
schiedener Methoden: entweder man ermittelt die
in der Umgebung der geometrisch-optischen Glanz-
stelle der Oberflache reflektierte Strahlung mittels
der Kirchhoffschen Beugungsformel oder man ver-
wandelt die strenge Reihenentwicklung der Green-
schen Funktion nach Bessel-Funktionen in ein
Integral, und dieses nach Watson! in eine Resi-
duensumme iiber die Nullstellen der Hankel-
Funktionen bzw. ihrer Ableitungen oder einer
geeigneten Linearkombination. Die letzte Me-
thode hat den Nachteil, dall die Summe iiber
die ,,Residuenwellen (s. Bremmer?) nur dann
praktisch brauchbar ist, wenn die Lichtquelle fiir
den Beobachter geometrisch unsichtbar bleibt —
im anderen Fall werden die aufeinanderfolgen-
den Residuenwellen zu Anfang der Reihe ex-
ponentiell gréBer. Die Anwendung der geometri-
schen Niaherung andererseits hat gerade im Fall
einer geometrisch sichtbaren Lichtquelle Sinn, je-
doch liefert sie nicht die praktisch bei nicht allzu
groBen Objekten auftretenden Maxima und Minima
der Intensitit als Funktion des Abstands oder des
Winkels. Eine Briicke zwischen den beiden erwahn-

1 G.N.Watson, Proc. Roy. Soc. A 95, 83,546[1919].

2 H. Bremmer, Terrestrial radio waves, Elsevier
Publ. Comp. 1949.

3W. Franz u. K. Deppermann, Ann. Phys. 10,
361 [1952] (als I zitiert).

* A. Sommerfeld, Vorlesungen, Bd. VI, Leipzig
1947; s. Kap. V, Anh. 2.

5 Nach Fertigstellung der vorliegenden Arbeit er-
schien ein Aufsatz von Isao Imai®, in welchem fir

ten Methoden wird durch die ,,semi-asymptotische‘
Entwicklung geschlagen, welche von Depper-
mann und mir angegeben wurde?. Sie ergibt einer-
seits im Schatten in Gestalt unserer ,. Kriechwellen*
genau die Watson-Bremmerschen Residuenwellen,
im Licht die geometrisch-optische Naherung zuziig-
lich der aus der Schattenseite in die Lichtseite des
Objekts hiniibergewechselten Kriechwellen. Dal} die
Beriicksichtigung der Residuenwellen neben der geo-
metrischen Welle im geometrisch beleuchteten Ge-
biet nicht etwa eine inkonsequente Naherung ist,
soll in der folgenden Untersuchung gezeigt werden;
wir werden dabei den exakten Ausdruck fiir die
Greenschen Funktionen streng in zwei Summanden
zerlegen, deren einer asymptotisch der geometrisch-
optischen Naherung ohne die erwihnten Maxima
und Minima entspricht, wihrend der andere die
Kriechwellen liefert. Fiir den Schattenraum erhalten
wir in dieser Weise genau die von Sommerfeld* an-
gegebene Gestalt der Greenschen Funktion, wihrend
wir im Lichtraum die dort praktisch unbrauchbare
Sommerfeldsche Darstellung durch eine andere er-
setzen, deren Brauchbarkeit wir bereits in I durch
die Erklarung der bei den Limbachschen Messungen
am Zylinder auftretenden Maxima und Minima er-
wiesen haben?.

die Beugung der ebenen Welle am Zylinder dieselbe
Darstellung mittels der Watson-Transformation neu
hergeleitet wird. Seine Formeln stimmen mit unseren
Ergebnissen iiberein, jedoch sind die numerischen
Werte in (7. 8), (7. 18), (7. 22), (8. 16) fehlerhaft, s.
unsere Tab.1 und 2. — Zusatz b. d. Korr.: Im
Gegensatz zu Imai mochten wir betonen, dal auch
unsere frithere Herleitung deduktiv, und nicht ,,unter
Riickgriff auf physikalische Uberlegungen‘* gewonnen
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Um die Grundgedanken der folgenden Darstel-
lung klar zu zeigen, werden wir zunéchst einen be-
sonders einfachen Fall behandeln, nimlich die Er-
regung in der Oberfliche eines schallweichen Zylin-
ders infolge einer einfallenden ebenen Primérwelle.
In den spiteren Abschnitten werden dann die all-
gemeinen Greenschen Funktionen fiir Zylinder und
Kugel angegeben.

1. Erregung auf beugendem schallweichen Zylinder

Wir fithren Zylinderkoordinaten g, ¢ ein. Aus der
Richtung ¢ =0 mége primir eine ebene Welle

+o0

Uy = e_ikgcosrp = 2
M=—a0
einfallen. k bedeutet die Wellenzahl 27/4. Wegen der
in (1) mitangegebenen Entwicklung der ebenen
Welle nach Bessel-Funktionen (s. Magnus-Ober-
hettinger?S. 27) lautet die Losung des Beugungs-
problems mit der Randbedingung w=0 bei p=a

(k0)>-
(2)
Des weiteren soll uns in diesem Abschnitt nur die

Normalableitung der Erregung in der Oberfliche
selbst beschéftigen, also nach (2)

i=meim? J, (ko) 1)

+o00

u= 3

m=-—o0

. J o, (K
ifm.ezml,, <Jm (](.0)_ Hm ( (1) H(l)

1) (ka) " m
m

o I~ ), e
™ = 2 CEO Gy - ©)
= m

Hierin wurde beniitzt, dal die Wronskische Deter-
minante der beiden Hankel-Funktionen H? (ka),
H) (ka) gleich 4/inka ist. Gl. (3) 1aBt sich in be-
kannter Weise als Residuensumme des folgenden
Integrals auffassen:

ou 1 oAy exp [iv (p —37/2)] 4
on ‘YT T4 sin v HW) (ka) )
(©) Y
Abb. 1. Integrationsweg ¢ ®
fur die Summation der g 5
Zylinderfunktionen. % - /

Der Integrationsweg C' umlauft die reelle Achse (s.
Abb. 1). Fihrt man in dem unterhalb der reellen

wurde; diese heuristischen Uberlegungen dienten ledig-
lich zur Auffindung des Liosungsweges (auch fiir Imais
und unsere Rechnung mittels der Watson-Transfor-
mation!) und Losungsansatzes, um dann nachzuwei-
sen, dall die Ansitze zur Befriedigung der Integral-
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Achse verlaufenden Teil des Integrationswegs —v
als neue Variable ein, so erhilt man wegen H) =
ei:n' H(l)

v
ou 2 dv _; ¥t cosv(p—m)
E_n a) = . . _——H("l)(k‘a) . (5)

na sinvz
(D)
Die Integration lauft nunmehr iiber den Integra-
tionsweg D (Abb. 2), oberhalb der reellen Achse.
Der Integrand besitzt im positiv Imaginidren eine
Polreihe an den Nullstellen der Hankel-Funktion
H® (ka); sie verlduft rechts oberhalb des Punktes
y=ka in den ersten Quadranten hinein. D kann zu
einem Umlauf um diese Polreihe deformiert werden,

® $
0\ oAfPoireine
0 o

ka

Abb. 2. Umformung des Integrationswegs in einen
Umlauf um die Nullstellen der Hankel-Funktion.

da der Integrand im Unendlichen wegen des Fak-
tors 1/H'" auBerhalb der Polreihe stirker als eine
Exponentialfunktion verschwindet. Gl. (5) 148t sich
dann durch die Residuensumme an den Polen 7,
ersetzen, sofern diese konvergiert:

ou 4i

— (@) = —

cos v, (p — 7)
on a4

exp [—iv;7/2]
eH (ka)
o In
Da die Residuen vom 1/H'V sich schwiicher als 1/]/»
verdndern, hiangt die Konvergenz der Summe nur
davon ab, ob cos v (p—n) -exp (— 1v7/2)/sin v mit
wachsendem Imaginérteil von » abnimmt oder nicht.
Sie konvergiert dann und nur dann, wenn |p—an|
<m/2, also auf der Schattenseite des Zylinders. Auf
der beleuchteten Fliache divergiert sie. Wir werden
spater sehen, dall bei einem in betrichtlicher end-
licher Entfernung gelegenen Quellpunkt die Reihe
konvergent, jedoch praktisch unbrauchbar ist, da
die Glieder anfinglich stark anwachsen. — Um eine
auch auf der Lichtseite brauchbare Entwicklung
aufzufinden, fithren wir in (5) die folgende Identitét
ein:

- (6)

sin v, 7

cos v (p—m) = €' cos yp— i€ sinva.  (7)

gleichungen geeignet sind (wenn auch der Anschluf
in der Schattengrenze schwierig ist).

6 Isao Imai, Z. Physik 137, 31 [1954].

7 Magnus-Oberhettinger, Formeln und Sitze
fur die speziellen Funktionen der mathematischen
Physik, 2. Aufl. Berlin 1948.
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Dadurch entstehen zwei Summanden, von denen
wir den ersten wieder in eine Residuensumme ver-
wandeln :

u
on

41 \ _cos VP exp [iv;7/2]
T a ZI—J sin v,z EH(VU (ka)
ov /;z

(8)

+o0
exp [iv (¢ — /2]
T na Jd"" HD (ka)

Die Summe konvergiert diesmal, wenn |¢| < 37/2,
d. h. also im Lichtgebiet sowie im anschlieBenden
Schattenbereich. Fiir den Schattenbereich wire es
unzweckmifBig, Gl. (8) an Stelle der viel einfacheren
Gl. (6) zu beniitzen, fiir das Lichtgebiet dagegen ist
Gl. (8) angemessen. Das Restintegral ist ein exakter
Ausdruck fiir die in der Umgebung der Glanzstelle
geometrisch reflektierte Welle. Man sieht dies so-
fort, wenn man fiir die Hankel-Funktion ihre
asymptotische Darstellung (s. Magnus-Oberhet-
tinger?, S. 33, b1)

H(U(x)N Jo. 2 ,efig(amsa—sina)—i%
v mx sin «

v
(COS &= 7)

9)
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einsetzt und dann das Integral in der Umgebung des
bei ag=7/2—¢ gelegenen Sattelpunktes auswertet:

+ o
2 exp [iv (p—x/2)]
o | ar: A ) (10
—0

~— 21k cos g-e-ikacosy,

Dies ist genau die geometrische Naherung.

Die Abspaltung der Residuenwellen vor der
asymptotischen (geometrisch-optischen) Auswer-
tung der Integraldarstellung (5) ist deshalb sinnvoll
und konsequent, weil sie den Sinus im Nenner des
Integranden beseitigt, dessen Pole gerade auf der
reellen Achse liegen, wo wir die Sattelpunkte des
Integrals (10) vorfinden. Bei einer direkten asymp-
totischen Auswertung von (5) wiirden wir einen
mit ¢ und ka fluktuierenden Fehler begehen ; durch
die hier vorgenommene Aufspaltung (8) bewahren
wir die Residuenwellen davor, im Fehler der
asymptotischen Entwicklung unterzugehen.

In dem folgenden Abschnitt wird sich herausstel-
len, daf3 die Residuenwellen identisch sind mit den
Kriechwellen, welche in I fiir den Zylinder und in
einer neueren Arbeit® fiir die Kugel aus einer Inte-
gralgleichung abgeleitet wurden.

2. Greensche Funktion des Zylinders

Die Greensche Funktion der leeren Ebene ist

00(91s02:¢)=zf15”(kl’912+ 0,2 — ’Ql 0y cosq)

Z e HY (ko) T (ko) [0 < o] i

(s. Magnus-Oberhettinger?, S. 31, Gl. 3b). Fiir die Greensche Funktion des Zylinders erhalten wir

hieraus folgenden Ausdruck:
+o

Z ene H(nl;) (k) (Jm (ko) — HY (kﬁ’l)) .
m=—co

Darin bedeutet 2 den Differentialoperator einer homogen-linearen Randbedingung; z. B. ist 2 =1 fir
den schallweichen Zylinder (elektromagnetisch: € || Achse) und Q (z)F (x)=dF/d« fiir den schallharten
Zylinder (9 || Achse). Gl. (12) wollen wir wieder in ein Integral iiber C' (Abb. 1) verwandeln. Indem wir
fiir den in der negativen Halbebene verlaufenden Teil des Weges die neue Variable —» einfiihren, erhalten
wir ein Integral iiber D:

R

(D)
Im Anhang 1 wird gezeigt, daB3 der Integrand von (13) wegen der Eigenschaften der darin enthaltenen
Zylinderfunktionen im Unendlichen in der positiv imaginidren Halbebene stiarker als exponentiell ver-
schwindet, sofern man sich im endlichen Phasenabstand von der Polreihe der Hankel-Funktion hilt. Wir
diirfen daher D in einen Umlauf um diese Polreihe deformieren und die Integrale in die Summe der Re-
siduen verwandeln, sofern sie konvergiert:

2J,, (ka)
.QH(U (ka)

i
4

G (01, 00, 9) = (12)

H' (ko)
sinvz 087 (p—m) .QH(U (ka)

(QHD (ka) J, (ko) — RJ, (ka) HD (ko). (13)

in H‘” (ko,) H“’ (ko,)

)

cosv; (gv—n)

-} (14)

= QH) (ka).
S i — QH(M (ka)/
L)

8 K. Deppermann u. W. Franz, Ann. Phys. 14, 203 [1954].
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Mit Hilfe der Wronskischen Determinantenbezie-
hung kann man an Stelle von Q H® (ka) im Zih-
ler einen linearen Differentialausdruck von HV (ka)
in den Nenner bringen, um etwas bequemere Aus-
driicke zu erhalten (die im iibrigen zuder bei Som -
merfeld? angegebenen Gestalt der Greenschen
Funktion der Kugel analog sind); insbesondere
ergibt sich fiir Q=1 und Q(z)=d/dz
17T

— H? (ka)=—1/ka-H) (ka),

g (15a)

qﬂT”Hg%’l)'(ka)=+1/kaz,-H<,}l>(lm). (15b)
Um die Konvergenz der Summe einzusehen, be-
niitzen wir, dafl nach (A 7) langs der Polreihe » die
folgende Darstellung durch einen positiven Para-
meter ¢ zulaf3t:

. 2t \-1
vg~texp|i 5 1— logm) ) :

Fithren wir dies in die asymptotische Darstellung
(A 4) ein, so erhalten wir als bestimmenden Faktor
der Hankel-Funktion vom Argument kg

(16)

1
O o i
HY (ko) 7 rexp|
o/ov (QHV (ka)) und 1/QH® (ka) verhalten sich
an den Polstellen nach (A 4) wie 1/J/ ¢, und fiir den
gesamten Summanden ergibt sich ein Verhalten wie

log (0, 02/a?)
log (2t/ka) )] - (18)

x  log (o/a)
2 10g(2t,‘ka)]' (17)

exp[t(]qp—n |—m+ % .

Im lim ¢— oo streben die Reihenglieder exponentiell
dem Werte Null zu, sofern |¢p—zn| <z; iiberall auller
in derjenigen Richtung, in welcher die Lichtquelle
gelegen ist, konvergieren die Summen. Allerdings
fangen die Reihenglieder erst an, kleiner zu wer-
den, wenn

JU
kl . <91 02 )2(7!7[';/*_”1) (19)

<
2 a?

da erst dann der Exponent von (18) negativ wird.
In der Nédhe der Einfallsrichtung wird der Expo-
nent von (19) beliebig grof3, und damit auch der
Wert von ¢ und somit die Anzahl der erforder-
lichen Reihenglieder von (14). Mit wachsendem
Beugungswinkel konvergiert die Reihe schneller,
wird jedoch praktisch erst dann brauchbar, wenn
die Reihenglieder von Anfang an rasch abnehmen.
Die hierfiir notigen Beugungswinkel erschliellen

W. FRANZ

wir aus der Untersuchung des Anfangsteils der
Reihe. Die zugehorigen »-Werte liegen nach For-
mel (A 17) des Anhangs in der Nahe von ka,
und zwar in einem Abstand von der Gréfen-
ordnung (ka)” in der Richtung /3, besitzen so-
mit neben einem Realteil ~ ka einen Imaginirteil
von der GréBenordnung (ka)”, welcher positiv ist
und von Glied zu Glied wichst. Das Verhalten der
Hankel-Funktionen vom Argument ko wird nach
den Debyeschen asymptotischen Formeln (s. Mag-
nus-Oberhettinger? S. 33, b1) bestimmt durch
den Exponentialfaktor

ei kJo*—a*—ivarcosa/o,

Der positive Imaginirteil von v bewirkt, dall dies
mit wachsender Nummer der Polstellen expo-
nentiell groBer wird. Die Reihenglieder von (14)
koénnen daher nur dann abnehmen, wenn die winkel-
abhéngigen Faktoren fiir entsprechende Kompen-
sation sorgen, also

e_i v(| t— @ | —m + arcosa/o, + arcosa/o.)

mit wachsendem Imaginirteil von » kleiner wird,
d. h.

arcos £ 4+ arcos—a— + |p—z | <m. (20)
L& Q2

Wie aus der beistehenden Abb. 3 zu entnehmen ist,
bedeutet dies gerade, daBl P, und P, fiireinander
nicht geometrisch sichtbar sind. Im Schatten ist
also die Reihe rasch, im Licht dagegen sehr spit

Abb. 3. Geometrische Deutung der Konvergenzbe-
dingung fiir die Residuensumme.

konvergent. Praktisch kommt es allein auf das
Verhalten der ersten Reihenglieder an, so dafl
Gl. (14) nur auBer Sicht brauchbar ist und wir
uns fiir den Sichtfall nach einer anderen Formel
umsehen miissen. Das Rezept dazu ist in § 1 be-
reits enthalten; wir spalten mittels Gl. (7) von
(13) einen Teil ab, welcher von dem Nenner sin vz
frei ist und der geometrisch reflektierten Welle
entspricht: :
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a— % Z C?S”l‘l’ R H(vll) (k91)H5f1l) (ko,) .QHE?[) (ka)
T~ sinya Ta-QH(U (ka) (21)
av v
i +o0 ivg (1) (ko,
@ s m‘ (QHD (ka) H? (ko) — QH'? (ka) H\D (ko).
—o

An Stelle der Bedingung (20) ergibt sich jetzt

2

(22)

Dies ist im gesamten Bereich |¢| <z erfiillt, interes-
siert aber natiirlich nur fir das Sichtgebiet, da
auller Sicht die einfachere Reihendarstellung (14)
moglich ist.

Es sei hier darauf verzichtet, nachzuweisen, daf3
in der Tat der geometrische Anteil die iibliche Ge-
stalt der reflektierten Welle neben der Primérwelle
enthilt, da hierauf an anderer Stelle genauer ein-
gegangen werden soll®. Doch wollen wir die asym-
ptotische Gestalt der ersten Kriechwellen fiir Q=1
d/dz kurz angeben. Wir driicken zunéichst die in
den Nennern stehenden Hankel-Funktionen von ka
mittels der Formel (A 14) des Anhangs 1 durch das
Airysche Integral aus, dessen Argument vermittels
Gl. (A 16) mit v zusammenhéngt. Die Nullstellen
der Hankel-Funktion H'" (ka) bezeichnen wir mit
v,, die ihrer Ableitung mit »;, die zugehéorigen Argu-
mente des Airyschen Integrals mit ¢, bzw. ¢;. Es
gilt somit

H(l;)’ (ka) = 0, H‘;;ll’ (ka) =0
A’ (q) = 0, A (q) = 0.

Die Ableitungen von H, nach dem Argument
fithren wir auf Ableitungen nach dem Index zuriick
vermittels der Gleichung

¢cHY (@)
ox

a a
arcos — —+ arcos — + |¢| < 2.
51 02

(23)

oH) ()
v

av

’

ka\% exp [i ko2 —a®—im[4] exp

welche man etwa aus der Rekursionsformel

el (x)

2 —f— = HY, (@) — HY), (=)

durch Taylor-Entwicklung um die Stelle v erhalt.
Fiir (14) ergeben sich damit die folgenden asym-
ptotischen Formeln der Kriechwellen:

w2 [ ka\s . cos v, (p —m)
ST i ¥, 7] Buiiidiel 1. M.
Cr 8 ( 6 > ¢ IZ sin v 7 (4]
HY) (koy) HY) (Koy)
q,- A% (q;)
— e e AN pais cos vy (p—m)
Cha 24 ( ) Z siny (24a)

HQ) (ko) HY) (key)
' A (q)

Dies gilt fiir beliebige Werte der Abstiande p; und g,,
sofern sie nur =a sind. Liegt Quelle oder Beob-
achter in der Zylinderoberfliche, dann kiirzt sich
eine Hankel-Funktion des Zahlers von (14) gegen
eine des Nenners; liegen beide auf der Zylinderober-
fliche, so fillt auch die zweite Hankel-Funktion im
wesentlichen gegen die im Nenner stehende zweite
Ableitung fort. Liegen beide Punkte in gebiihren-
dem Abstand von der Zylinderoberfliche (ndmlich
so0, dal kp— ka mindestens von der Gréfenordnung
(ka)'’3 ist), so kann man wieder der Debyesche
asvmptotische Formel verwenden und erhalt

[ikVo,2 —az—im/4] exp [iv, ] + exp [iv; (27 — @)]

JT
~ ——— _1”/6
O T < 6 > ViVo, — a2

ka\% exp [ikVp,> —a?—in/4] ex

‘&

; 1 —exp[2miv]

VkVoy> —a?
exp [—iv; (arcos a/o, + arcos a/p,)]
. A* (q)

(25)

>

plikVo,2 _a-—w /4] exp [iv,¢] +exp[iv; (27— )]

) Ve —a

9 Fiir ebene Primirwelle ist dieser Nachweis bei

2

) 1 —exp [27iv;]

Vive,r —
exp [—1i¥; (arcos a/o, + arcos a/g,)]
A% @) '

(25a)

Imai gegeben.
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Man erkennt als Faktoren dieses Ausdrucks die
von P; bzw. P, zum Rand des sichtbaren (bzw. be-
leuchteten) Flichengebietes strahlende Zylinder-
welle, und weiter (unter der Summe) Phasenglieder
mit Dampfung (entsprechend dem imaginiren An-
teil von »,) welche zuriickgelegten Winkelstrecken
von

@ — arcos a/p, — arcos a/p,
bzw.
27 — @ — arcos a/p, — arcos a/p,

entsprechen. Ein Blick auf Abb. 3 lehrt, dal dies
gerade die geometrischen Wegstrecken der beider-
seits an dem Zylinder entlangkriechenden Wellen
sind, welche von P, kommend die Oberfliche tan-
gential getroffen haben und sie in Richtung auf P,
wieder verlassen. Somit ist die in I entwickelte Vor-
stellung iiber das Zustandekommen der Kriech-
wellen-Terme dem Ergebnis der Watson-Transfor-
mation in allen Einzelheiten angepafit. Dies gilt
sogar fiir den aus sin vz entstandenen Nenner von
Gl. (25); er ist identisch mit dem Nenner von I,
GL (7), entstanden durch Summation der geometri-
schen Reihe derjenigen Kriechwellen, welche den
Zylinder ein-, zwei-, drei- und mehrmals umlaufen
haben.

Die Kriechwellen des Sichtgebietes [Gl. (21)]
unterscheiden sich von denen des Schattens nur
durch leicht ersichtliche Modifikationen der Winkel-
funktionen, durch welche die ,,Kriechstrecken fol-
gende Werte annehmen:

27 + @ — arcos a/p; — arcos a/p,
bzw.
27 — @ — arcos a/p; — arcos a/p,.

Aus Abb. 4 ist zu ersehen, dafl auch dies der geo-
metrischen Lage gemal ist.

Abb. 4a und 4b. Wegskizzen fiir die beiden Kriech-
wellen von P, nach P,.

Benutzen wir die in Anhang 1 gegebenen Werte
von ¢;, q;, A und A’ und die Gln. (A 17a, b) fiir »,
dann ergeben sich fiir die Konstanten in (25) und
(25a) die Werte der Tab. 1 und 2.
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v = ka-+ein/3 (ka)"-0,808617 — e=in/3 (ka)~""-0,145463

2,578096 0,260341
3,825715 0,514009
4,891820 0,818106
5,851301 1,158348
= 1,855757 0,114794
3,244608 0,350916
4,381671 0,639968
5,386614 0,967187
6,305263 1,325211

Tab. 1. Nullstellen von H" (ka) und H (ka) .

Tl/(4'61’3 qAZ) n/(12.6ll3A’2)

0,21607 0,12845
0,11075 0,09793
0,09055 0,08437
0,08000 0,07613
0,07312 0,07038

Tab. 2. Koeffizienten der Kriechwellen in der
Greenschen Funktion.

Das Verhiltnis der Kriechwellen (21) zur Primér-
welle G, (genommen auf der Zylinderfliche an der
Schattengrenze) wird

(ka)'3 ey .
Gkr/GO = Vz—kl/@:’—?a" exp [lk Vglz—cﬂ =+ wz/12]
exp [iv; (p+ )]+ exp [iv; (7 — )]
‘SI"‘C‘ 1 —exp[27miv]

- exp [¢ v, (arsin a/p, + arsin a/p,)] (25Db)

mit den in Tab. 3 aufgefiihrten Koeffizienten C';
bzw. C,.

c; C,
1,53187 0,91072
0,78520 0,69427
0,64199 0,59820
0,56719 0,563974
0,51840 0,49897

Tab. 3.

Der Vergleich mit I zeigt, daf} die dort in Gl. (59)
und (60) angegebenen Koeffizienten bis 409, zu
klein sind. Gleichzeitig sieht man die Ursache fiir
diese Abweichung: die hoheren Kriechwellen sind
so stark, daB sie beim AnschluB3 des Sicht- an das
Schattengebiet nicht beiseite gelassen werden diir-
fen, wie wir dies in I getan haben. In der Arbeit iiber
die Kugel® dagegen sind bereits die richtigen Koeffi-
zienten der Tab. 3 herangezogen worden, deren Be-
stimmung aus der Integralgleichung (durch An-
schluB der hoheren Winkelableitungen von @) zu
kompliziert wird ; dies ist der Nachteil der Integral-
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gleichungsmethode, welche anderseits aber den Vor-
zug besitzt, auf beliebige Flichen anwendbar zu
sein. Gliicklicherweise hingt der Anschlul an der
Schattengrenze nur von der Kriimmung der tangen-
tiell getroffenen geodéitischen Linie ab (in erster
Néaherung wenigstens) und kann daher vom Zylin-
der iibernommen werden. Die Kriechwellen werden
in der Schattengrenze der beugenden Oberfliche
,»,geboren®, und ihr ,,Geburtsgewicht‘‘ (bezogen auf
Primarwelle 1) ist w/gA fir » und (6¢/ka)'37/3 4’
fir 1/ik -0@/on; diese Zahlenwerte sind in Tab. 4
angegeben.

DaB} sie in der Tat nur von der geoditischen
Kriimmung abhéngen, ergibt sich etwa daraus, daf3
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sie fiir die Kugel ebenso gelten wie fiir den Zylin-
der. — Auf die Behandlung der Beugung an kon-
vexen Flachen mittels der Integralgleichung unter
Beniitzung der angegebenen ,,Geburtsgewichte
gedenken wir demnéchst zuriickzukommen.

u 1/ik-oulon
1,83243 — 1,79678 - (i/ ka)t'?
—0,73473 1,56880
0,54538 — 1,45621
— 0,45333 1,38324
0,39627 — 1,32996

Tab. 4. ,,Geburtsgewichte‘‘ der Kriechwellen
(Primérerregung = 1).

3. Greensche Funktion der Kugel

Die Greensche Funktion des leeren Raumes ist

exp [Pk |r2+ ros2 — 27, 7, cos & ik
47 Ve + r2—2r, rycos ® T

Gy (ry, 15, 9) =

Dl @en+1)

n=0

P, (cos 9) L'V (kry) yy, (kry) fiir r; < r,. (26)

Darin sind 7, und r, die Abstinde des Auf- und Quellpunktes vom Koordinatenursprung und ¢ der Winkel
zwischen ihren Radiusvektoren. Die Funktionen () und y sollen in der Sommerfeldschen Bezeichnungs-

weise bedeuten

‘-(1)

0= | Hily e

yu @) = |/ Tusn @) (27)

Die Formel fiir die Entwicklung nach Kugelfunktionen entnehme man etwa aus Magnus-Oberhettinger?
Seite 31, Gl. (4a). Die Greensche Funktion der Kugel zur Randbedingung 2G =0 ist

ik < 2y, (ka)
= G ZO (27L + 1) Pn (COS 19) C(nl) (Icrz) < n (k?’l)—— —m‘ é';'l) (]Cf'l)) . (28)
n= n
Die Summe laBt sich wieder als Residuensumme eines Integrals auffassen:
k du yu (kry) LD (ka) — Qyu (ka) LD (kry)
G=—s7 | smum @r+1) Pu(—cosd) ZiD (ry) — T T # (29)
C+ u
Da der Integrand eine ungerade Funktion von u + 1/2 ist, kann die 0 ©
Integration auf den bereits bekannten Weg D verlegt werden (s. Abb. 5), Pﬁ
welcher in einen Umlauf um die Polreihe der Zylinderfunktionen des A

Nenners deformiert werden darf. So erhalten wir die Watsonschen

Residuenreihen

ik QY (2,ul+ l)Pul (— cos ) .

Abb. 5. Integrationsweg fiir die
Summation der Kugelfunktionen.

S0 (k) S (k) QL2 (k)

=% 4 Sin g

3 (30)
= 0y (%
o b (k) / .

Fiir ihre Konvergenz gilt genau dasselbe wie beim Zylinder; das bedeutet, dal (30) nur im Schattengebiet
brauchbar ist. Um auch fiir das Sichtgebiet brauchbare Reihen zu erhalten, nehmen wir eine zu (7) ana-
loge Aufspaltung der Kugelfunktionen vor, welche in Gl. (A 38) (Anhang 3) angegeben ist. Dadurch
entsteht
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. Ky Z (2u,+1) P‘,,I (cos ) i, q,ll) (kry) :f,l) (k) Q:‘(l;‘? (ka) -
8 sin 0 ) (
l — )(k(t)‘,,l

au
ik

D—

Die Residuensumme nimmt nunmehr auch im
beleuchteten Gebiet rasch ab, wihrend das Inte-
gral den geometrischen Anteilen entspricht und
sich wegen des regulidren Verhaltens des Integran-
den auf den positiven Teilen der reellen Achse
gut asymptotisch auswerten 146t ; dabei kann man
den Integrationsweg iiber einen auf der positiven
Achse zwischen 0 und ka liegenden Sattelpunkt
fithren, im iibrigen verlduft die Rechnung im we-
sentlichen wie beim Zylinder (s. das Beispiel fiir
die einfallende ebene Welle in § 1), da Q¥ asym-

g | e+ 1 @R O ) (1 ) —

Q2 Yu (k) -1
__;‘(Ill)(ka ~~u) (Iv ) .

ptotisch eine Exponentialfunktion ist, s. G1. (A 39)
des dritten Anhanges.

Die Greensche Dyade des elektromagnetischen
Falls 1aBt sich auf skalare Funktionen zuriickfiih-
ren, welche sich von (28) nur unwesentlich durch
die Gestalt der Funktionen von 7, und der Kugel-
flaichenfunktionen unterscheiden, so dal3 sich die
vorstehende Methode ohne weiteres tibertragt. —
Wir geben abschlieBend noch die asymptotischen
Formeln fiir die Kriech“ellen (31), spezialisieren
dabei wieder auf Q () =d/dz und 2=1, und setzen
zunichst voraus sin 19> 1/v:

A (1 I (%
G a ([ ka\% 7 ka _inl6 Z exp[iv, 7] cos (v; & —m[4) H“l (k) H"l (kry) .
k™ g\ 76 2r; 1y sin g ; cos v, 7T q A% (q;) ’ (528
- 1) (% (1 A
5 n [ ka\% 7 ka _in6 Z exp [iv,z] cos (v, & —m/[4) HFI (ory ) H.‘vl) (k) 391
ke~ o4\ 76 27, 7y sin 19 cos v 7 A" (q;) ( )
Liegen beide Punkte in einem Abstand, der grof3 gegen (ka)!/3/k ist, dann kommt
en3 . explikl)r® —a?]-exp[ik|ry,® — a* [ &
G e (e TR TR e — oD [ — ] ]/ L. (33a)
4-6% EVrr, V2 — a? Vrg? — a? 2 sin
v, (B +27) — i — vy @Qr—B) + i — [ : ( ¥ o i >]
3 ) = e < n—=>9) + i — — iy, | arcos — + arcos —
Z exp |iv, (¥4 2m) L} + exp |iv; (27 ) L4r.exp iy 7'1 0s S
- 14- e2mivy qA* () ’
_ etn|3 a5 &
Cu~— T3 6% AR =
Hier treten wieder die in Abb. 4 eingezeichneten akustisch elektromagnetisch l
Kriechstrecken in den Exponenten auf, und die = .
Koeffizienten sind bis auf ein(.an konstanten .Faktor _ gﬁggé% _ 8:;;%3?3
die der Tab. 2; doch dndern sich fiir (32a) die Kor- — 0,448662 —0,579356
rekturen von v, gegeniiber Tab. 1 entsprechend —?’Z?;ggg —?sgg?glg
Gl. (A 17 d) von Anhang 1. Die Zahlenwerte fin- . i

den sich in der ersten Spalte von Tab.5. In der
zweiten Spalte sind dieselben Grofen aufgefiihrt
fiir die Randbedingung 2 (z)=1+x-d/dx, welche
im elektromagnetischen Fall auftritt. [Hierfir gilt
(A 17¢)].

exp[ikVr® —a®+i7/12]

Tab. 5. Koeffizienten von e-in/3 ka~1/? in der asympto-
tischen Entwicklung der »; fiir die Kugel.

Das Verhiltnis der Kriechwellen zur Primarwelle
G, (wiederum genommen auf der beugenden Fliche
in der Schattengrenze) ist

exp [iv, (& + )]+ i exp[iv, (z—7D)]

G/GOZ_ (I\"a)s/s . l/i/??f‘—‘ia‘-" s

2 V2r Vr.® — a2 sin 8

.ZCL.

l

14+ exp[2mivy] (34)

5 . a % @
i vy | arsin — + arsin —
L T r,
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mit den Koeffizienten von Tab. 3. Die Ubereinstimmung mit unseren frither aus der Integralgleichung

abgleiteten Formeln ® ist offenkundig.

Ist » sin & nicht > 1, also ¥ nahezu 0 oder &, dann gilt die Entwicklung (A 39) nicht, vielmehr treten
asvmptotisch Bessel-Funktionen des Arguments v sin ¢ auf. Speziell fiir =0 (Riickstrahlung) werden die

y
lassen. Statt (34) erhalten wir dann

explik Vr, > —a®+ i7/3

in (31) alle =1, und wir haben in (32), (33) und (34) einen Faktor |/2/zv sin ¢ -cos (vd—m/4) wegzu-

exp [iv, ]

(ka [r,2 — a2
(G]Go)9—0 = ]/l —.

V7'1 VT'12 — a?

a a

— . ivy | arsin— + arsin —
Zl:‘l’ncl 1+ exp[2aiy] . ( L rZ)'
(34a)

Auch dies stimmt genau mit unseren fritheren Formeln iiberein (s. Deppermann und Franz?, § 6).

Dafl die Kriechwellen auch bei der Kugel mit den in Tab. 4 aufgefiihrten Gewichten entstehen, leitet

man leicht aus (32) ab.

Mathematische Anhénge
Anhang 1

Fir positives Argument x und einen Index » mit
positivem Real- oder Imaginérteil, der nicht zu nahe
dem Werte x liegt, gilt fiir die Hankel-Funktion erster
Art die folgende asymptotische Darstellung [s. etwa
Sommerfeld?, Gl (21. 39)]

sin [x (a« cos &« — sin &) + 7/4]

(A1)

HD (x) ~ ——]/

masin a
mit

v
cosazz,¢m(a )< 0; | Re (o) | <7 (A2)

Ist |»|> @, somit |cos a|> 1, und Jm(«) <—1, dann

gilt gendhert
cos & ~ 1 sin a;

(A 3)

und daher

)

i v
a~—1log —;
i o o’

4"

2v
(A 4)

Die GroBenordnung der Hankel-Funktion wird damit
im wesentlichen bestimmt durch die Phase von v. Mit
vy =1-e¥ ist namlich

2» i 2t
v logT—l :t(coszp log—x——l — ypsin p
s 21
-+ it{sin p log7~1 + ycos y . (A 5)

Bei gegebenen ¢ verschwindet der Realteil dieses Aus-
drucks fiir einen bestimmten Winkel y,, der ndherungs-
weise gegeben ist durch

H9>(x)~—l —37-2'6in{v

7T 1
”'°~?(1—410g2t/x)' (A 6)
Die zugehorigen v-Werte
vy ~ & eiv (A7)

geben, dargestellt mittels des positiven Parameters ¢,
diejenige im ersten Quadranten gelegene Linie an,
langs deren die Hankel-Funktion nicht exponentiell

groB wird, sondern im Gegenteil proportional 1/}
klein; auf ihr liegen die Nullstellen der Hankel-Funk-
tion. In endlichem Abstand von dem kritischen Pha-
senwert y, ~ /2 wird die absolute Griofle der Hankel-
Funktion fiir hinreichend grofle ¢ bestimmt durch
einen Faktor

" 2t
etlcos zp,logT _ ( (A 8)

2¢\tlcos y]
= .

Hieraus folgt fiir das im Text auftretende Verhiltnis
der Hankel-Funktionen mit Argument ko, und ka

f|cos |
D (ka) ~ ( ) .
02

AuBer diesem Ausdruck wird noch der folgende ge-
braucht

HDY (ka) J,

HO (koy) H (A 9)

(koy) (A 10)

Das Verhalten dieser Differenz wird einerseits durch
das asymptotische Verhalten (A 4) bzw. (A 8) der
Hankel-Funktion H(!) bestimmt, weiter aber dadurch,

daB es stets eine Linearkombination der beiden Hankel-
Funktionen gibt, bei welcher von dem sin-Ausdruck in
(A 4) nur der exponentiell kleine Anteil bestehen bleibt,
und zwar ist dies im ersten Quadranten die Bessel-
Funktion, im zweiten Quadranten H(?) + ¢27iv H(1). In

(A 10) kann wegen der Differenzbildung an Stelle von
J, auch die letzte Kombination bei Bedarf eingefiigt
werden. Daher erweist sich das exponentiell (genauer:
wie eine Fakultit) anwachsende H( 1) stets als verbun-

— J,y (ka) H(Vl) (koy)-

den mit einem im selben Mafle abnehmenden Faktor,
und wir erhalten fiir (A 10) asymptotisch bis auf kon-
stante Faktoren

1 a t|cos | o t|cos y|
1 L i N

Das Produkt von (A 9) und (A 11) strebt daher mit
wachsendem ¢ gegen 0, sofern g, > « und p, ist. Dieses
Ergebnis 148t sich auf QHS})(ka) und Q2 J, (ka) iiber-
tragen.

Zur Bestimmung der kleinsten Wurzeln »; von
H((x)=0 ist Gl. (A 1) nicht genau genug; diese
liegen in der Nihe von » = x, wo sich die Hankel-Funk-
tionen asymptotisch durch die Zylinderfunktionen

(A 11)
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vom Index 1/3 bzw. das Airysche Integral ausdriicken
lassen. Der Zusammenhang sei hier kurz explizit ab-
geleitet. Die Sommerfeldsche Integraldarstellung

1 izcosy+iv(y— il
H( (x):;dee : ”( 2) (A 12)
S
mit dem aus Abb. 6 ersichtlichen Integrationsweg S
besitzt fiir =2 einen Sattelpunkt bei y=z/2. Indem

®

Abb. 6. Integrationsweg fur die S
Sommerfeldsche Darstellung der
Hankel-Funktion.

wir y=mn/2+t setzen und um ¢{=0 entwickeln, erhal-
ten wir
in/3
¢ ©
1 y - iI 3
HD (2) ~ — de-'T0T L (A1)

i7/3
-+ o

Mit ¢ = (6/x)% e—i7/3 v wird dies:

(1) 2 it/3 6\
HD (x) i g -/ 4@ (Aal4)
Darin ist A4 (¢) das Airysche Integral
+o0 ©
1 .
4 (q) = > j‘ dr-eilgr—1") =Jdr cos (T —qr) (A 15)
—00 0
und
6\%
qz(;) cemi3 - (v — ). (A 16)

Nennen wir »; die Nullstellen der Hankel-Funktion
H() (x) und g, die Nullstellen des Airyschen Integrals,

dann ergibt sich aus (A 16) der Zusammenhang

_ LA
”l:x_f'(?) re T3 g,

Derselbe Zusammenhang besteht auch zwischen den
Nullstellen der Ableitungen von H (VU bzw. von 4, wel-
che wir »; und ¢; nennen.

Fiir die Berechnung der Beugung an mafig groen
Objekten ist (A 17) nicht genau genug; wir miissen
(wie bereits in I) ein Glied proportional =% hinzu-
fugen:

z\% . 6\% . 1 2
yl:x_f.(i) 3ln3ql_(?) e—17r/3( + T ),

(A 17)

10q, 180
(A 17a)
x\% 6\% 62
o Z) eimi3g, —|— i3 L 7
vy a:+(6) e 0 (x) 720 (A 17Db)

Im Falle der Kugel interessieren die Nullstellen Nvl von

(VEHG’(.::))’ und ;'l von [H‘Vl)(x)']/}]':

10 Die Anregung zu der vorliegenden Beweisfithrung
geht auf eine Diskussionsbemerkung von H. Brem-
mer auf dem McGill-Symposium iiber Mikrowellen-
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in/3 it in/3 -
¢ q‘+(x) o (20(1 ]80)’
(A 17¢)

x\% 6\% 7 a2
- e in/3g — (— im/3 U
et (5] wmma— ) el ).

Die asymptotische Lage der Nullstellen fur grofle ¢
entnehmen wir aus der asymptotischen Darstellung
von (A 15), welche sich sofort durch Entwicklung des
Exponenten um die beiden Sattelpunkte 7=x}¢/3

ergibt:
Vn g\'r =
A(q)NW '005[2(?) —I], (A 18)

A'(q) ~ _V‘_;t (3¢)" sin [2 (%) : ——%] .

(A 19)

Man entnimmt hieraus, daf

s[Z(—3\" s ~s[Z(-2\" (a2
a~s|1g\t—7 2l Rewl Ui ( )
1=1,2,3....

Die ersten funf Nullstellen beider Funktionen sowie
die zugehorigen Werte der jeweils anderen sind in
Tab. A 1 angegeben. Sie wurden teils aus den Potenz-
reihen, teils aus den asymptotischen Reihen berechnet
und mehrfach kontrolliert.

Q A (q1) D A’ (q1)
1,469354 1,16680 3,372134 | — 1,059053
4,684712 | — 0,91272 5,895843 1,212955
6,951786 0,82862 7,962025 | — 1,306735
8,889027 | — 0,77962 9,788127 1,375676

10,632519 0,74562 11,457423 | — 1,430780
Tab. A 1.

Anhang 2. Zusammenhang zwischen der Be-

rechnung der Dadmpfung aus der Watson-

Transformation und aus der Integralglei-
chung!®

Die Dampfung der Kriechwellen bestimmt sich nach
der Watson-Transformation aus den Nullstellen der
Hankel-Funktion und ihrer Ableitung bzw. einer
Kombination dieser beiden. Asymptotisch fir grole x
fithrt dies auf die Nullstellen des Airy-Integrals (A 15)
und dessen Ableitung. Anderseits haben wir die Damp-
fung in I aus der Integralgleichung bestimmt, und
dabei an Stelle von »; [s. (A 17)] den folgenden Aus-
druck erhalten

—im/3 T %
K, =x—ap et? (—2—4) .
Darin sind die «; die Wurzeln von
/'.{ -
Fa)=1—1 l,/'— j‘ dtt’z ed—t" = 0. (A 22)

(A 21)

7

optik (Montreal 1953) zuriick. Ich darf Herrn Dr.
Bremmer an dieser Stelle auch fur eine schriftliche
Diskussion des Gegenstandes danken.
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Um den Zusammenhang zwischen dieser Bestimmungs-
gleichung und dem Airyschen Integral herzustellen,
betrachten wir das Integral

o]
fa)= [aAtt V- ext—t", (A 23)
0
Aus der offenkundig richtigen Beziehung
(e ¢]
d
— (% Ol—1) =
{ df == (1% ex—8) = 0
0
folgt fur f die Differentialgleichung
>~y - —0 A 24
7@ =g (=g f@=0.  (A24)

Das Airysche Integral (A 15) dagegen genuigt ersicht-
lich der Differentialgleichung
’” q

A (q)+§A(f1)=0. (A 25)
Die allgemeine Losung hiervon setzt sich linear aus
zwei der drei Funktionen A (q), A (ex 273 - ¢) zusam-
men. Das Produkt zweier Losungen 4, (g) und 4,(q)
von (A 25) geniigt der Differentialgleichung

L ,, 2 .
(A, 4p)" + —= (A1 4,)' + 5 4, 4; =0, (A 26)

und hieraus folgt, daBl

_ ein/3 eln/3

f (a) = Al (T a) A2 (W O‘)
eine Losung von (A 24) ist; da A%, 4,%> und 4, 4, linear
unabhéngig sind, sofern 4, und 4, unabhangige Lo-
sungen von (A 25) sind, haben wir damit sidmtliche
Losungen von (A 24) gefunden. Um zu ermitteln, mit
welchen Koeffizienten diese Losungen in der speziellen
Funktion f(«) von (A 23) kombiniert sind, entwickeln
wir unsere Funktionen nach kleinen Argumentwerten
und vergleichen die ersten drei Koeffizienten. Man er-
halt durch Taylor-Entwicklung von exp (+iq7) bzw.

exp (at) in den Integranden von (A 15) bzw. (A 23)
unmittelbar

1 1 2
A (q) = 2](—,3(1’(3) +q 1(3) + 0 (113)) , (A28)
a2

. r(d F(5 O (a
3 (E“ E)*’z‘ C18d <“>)~
(A 29)

Unter Benutzung des Multiplikationstheorems der -
Funktion in Gestalt der Beziehungen (s. Magnus-
Oberhettinger?, S. 1)

al l 2 = 1/ R | 1
# (K)”(?) =¥artnd (T)
(1 5 (2
’(3)F(F):””'2""('_)

sowie des Ergénzungssatzes

)

(A 27)

f(a) =

27/V3
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verifiziert man nunmehr leicht, daf

. ? ein/3 e—in'3 )
f (a) = &% 1/714(70 A<—4———a> (A 30)

Wir konnen jetzt F («) aus Gl. (A 22) durch f(«) aus-
driicken:

3 d
F(a)=1—1 —s—ﬂ (A 31)
7 da
oder mit (A 30)
6 . ein/3 —in/3
F(x)=1+ = [elﬂ,3A’( Yy a)A( % a) (A 32)

o ein/3 e—in/3

+ ein/3 4 (W(X)A’( 1% a)].
Hieraus konnen wir die Ableitung des zweiten Airy-
Integrals eliminieren mittels der Beziehung fiir die
Wronskische Determinante. Aus (A 25) ergibt sich,
daf3 die Wronski-Determinante zweier Losungen eine
Konstante ist, und ihr Wert kann aus dem hochsten
Glied der Entwicklung (A 28) abgelesen werden:

e27i[3- 4 (q) A’ (e 273 q) — A’ (q) A (€273 -q) (A 33)
T
= —Ee"'/ﬁ.
Damit erhalten wir
12 —— ein/3 e—in/3
F (a) = - e—in/6. 4 < i a>A <4—% a). (A 34)

Der Vergleich von (A 17) und (A 21) zeigt, daBl die
Nullstellen des ersten Faktors denen von H{1'(z) ent-

sprechen [vgl. (A 14)], wiahrend der zweite Faktor das
konjugiert komplexe der Nullstellen von H g})(x) lie-

fert, in Ubereinstimmung mit I, § 6.

Anhang 3. Aufspaltung und asymptotische
Darstellung der Kugelfunktionen

Wir benotigen im Text die folgende Aufspaltung der
Kugelfunktion 1. Art in zwei 2. Art:

P, (cos #) = Q1) (#) + Q2 (9),
® 5

P

(A 35)

7
%

e-id

Abb. 7. Integrationswege fiir die Kugelfunktionen
zweiter Art Q¥ (9).

wobei die Funktionen 2. Art Q‘ui) fir Re) > —1
definiert sein sollen durch

. 1
QB = 27 J
(t3)
Dabei soll fir die der positiven Achse zugekehrten Teile
der Integrationswege (s. Abb. 7) die Phase der Wurzel
wie die von { dem Betrag nach kleiner als 7/2 sein.

dat
Y142 —2tcos &

(A 36)
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Man erkennt vermittels der Transformationt’ = —¢, dal
zwischen den Funktionen Q1) die folgenden Beziehun-
gen bestehen

QW (x— ) = =inr Q) (9);

({)‘]’2)(1_.19): einy Qf.l) (19) (A 37)

Hieraus folgt, dal

P, (—cos?) = et P, (cos ) —2isin r.-zQ("'—’)(:?). (A 38)

Hierdurch wird Q‘I?) fiir alle » definiert; es bleibt bei
ganzen Werten v =n = 0 regulir [entsprechend der In-
tegraldarstellung (A 36)], besitzt aber bei negativ
ganzzahligen v Pole.

Fuar %e(v) > —1 erhdlt man aus (A 36) asympto-
tische Formeln, indem man das Integral ersetzt durch

W. LORENZ

das zweifache Integral von e+ bis o, und beachtet,
dal} fur sehr grofle | v | der Betrag von ¢ in einer Rich-
tung, in welcher der Integrationsweg verlegt werden
kann, sehr steil abfallt, so dafl der Beitrag nur aus der
unmittelbaren Umgebung des Endpunktes herriihrt.
Intwickelt man dort den Integranden, so ergibt sich
fir sin 9 > 1/»

X 1 ./
exp [~z (r+7> ? + lT]

V2 zp sin

o] apgpilo—sl
exp 1(1)7*? —lz‘

V27y sin 9

/[ 2 f 1
P, (cos &) ~ lm cos l<v+ ?>l9—?]

’

QU (9) ~

Q2 (9) ~

s (A 39)

Kristallisationsiiberspannungen

Von WorLrcaNG LORENZ

Aus dem Physikalisch-Chemischen Institut der Universitat Leipzig

(Z. Naturforschg. 9a, 716—724 [1954]; eingegangen am 8. Juni 1954)

Die Uberspannungserscheinungen an Elektroden, bei denen Kristallisationsvorginge
geschwindigkeitsbestimmend sind, werden theoretisch behandelt. Abzuscheidende Metall-
ionen werden erst an Wachstumsstellen ins Metallgitter eingebaut. Dies ist auf zwei Wegen
moglich: Entweder werden die Tonen nur an Wachstumsstellen entladen, oder sie werden
an allen Stellen der Metalloberfliche entladen und gelangen als adsorbierte Atome durch
Oberflichendiffusion zu den Wachstumsstellen. Fiir beide Félle wird die stationire
Strom-Spannungskurve (Gleichstrompolarisation) und die Polarisationsimpedanz (Wech-
selstrompolarisation) angegeben. Die Ergebnisse sind experimentell priifbar, der Vergleich
zwischen Theorie und Experiment la6t gewisse Riickschlusse auf die an der Phasengrenze
Metall/Elektrolyt herrschenden Verhiltnisse zu.

Bei Stromflul durch eine Elektrode #ndert
sich das Elektrodenpotential, die Elektrode
wird polarisiert. Die Potentialinderung gegeniiber
dem Gleichgewichtspotential bezeichnet man als
Uberspannung. Wir betrachten im folgenden Me-
tallelektroden Me in Elektrolytlosungen, welche
Me*t als durchtrittsfahiges lon enthalten; ferner
soll Konzentrationspolarisation in Elektrolyten
experimentell von vornherein ausgeschlossen sein.
Bekanntlich werden dann unter sonst gleichen Be-
dingungen feste Metallelektroden meist um Gro-
Benordnungen stéirker polarisiert als fliissige Elek-
troden (Quecksilber, Amalgame). Man hat diesen
Unterschied schon seit langem auf den mit der

1 H. Brandes, Z. phys. Chem. A 142, 97 [1929];
T.Erdey-Gruzu. M.Volmer, Z. phys. Chem. A 157,
165 [1931]; M. Volmer, Physik. Z. URSS. 4, 346
[1933].

1a M. Volmer, Das elektrolytische Kristallwachs-
tum, Paris 1934.

1b M. Volmer, Kinetik der Phasenbildung, Stein-
kopftf, Dresden 1939.

Elektrolyse fester Metallelektroden einhergehen-
den Kristallwachstums- oder -abbauprozef} zuriick-
zufiithren versucht. In dieser Hinsicht sind beson-
ders die Arbeiten von Volmer und Mitarb.! zu
nennen, die bis in die jiingste Zeit? grundlegend
blieben.

Um die bisherigen, auf zahlreiche vereinzelte
Beobachtungen gestiitzten Vermutungen entweder
sicherzustellen oder zu widerlegen, ist es notwendig,
die moglichen Kristallisationseffekte theoretisch
genauer zu analysieren. Ein Vergleich zwischen der
z. Tl. schon vorliegenden, z. Tl. im folgenden
weiterentwickelten Theorie und neuen experimen-
tellen Befunden weist darauf hin, daf} bei einigen

2 7. B. bei Fr. Miiller, Z. Elektrochem. 43, 812
[1937]: J. A. V. Butler, Electrocapillarity, London
1940, S. 168 f.; G. E. Gardam, Disc. Faraday Soc. 1,
182 [1947]: H. Fischer, Z. Metallkde. 39, 161 [1948];
J. A.V. Butler, Electrical Phenomena at Interfaces,
London 1951, S. 200 f.; W. Lorenz, Z. phys. Chem.
202, 275 [1953].



