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Über die Greenschen Funktionen des Zylinders und der Kugel 
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(Z. Naturforschg. 9 a, 705—716 [1954]; eingegangen am 15. März 1954) 

Die Kugelfunktions-Reihen für die Greenschen Funktionen werden der Watson-Trans-
formation unterworfen, dabei jedoch ein der geometrisch-optischen Welle entsprechendes 
Integral abgespalten. Auf diese Weise erhält man, abgesehen von einer nunmehr genaue-
ren Bestimmung der Koeffizienten, gerade die früher von D e p p e r m a n n und dem Verf. 
(für den Spezialfall einer ebenen Primärwelle) angegebene Aufspaltung in einen geome-
trisch-optischen und einen Kriechwellen-Anteil, und damit eine bis zu ziemlich kleinen 
Objekten bequem zu handhabende semi-asymptotische Lösung des Beugungsproblems. 
Die Kriechwellen erweisen sich identisch mit den in der Theorie der drahtlosen Telegraphie 
wichtigen Besiduenwellen nach W a t s o n und V a n d e r P o l - B r e m m e r . — Die mittels 
der Watson-Transformation bestimmten Erregungsstärken der Kriechwellen lassen sich 
auf beliebig gekrümmte Flächen übertragen; dies gestattet eine semi-asymptotische Be-
handlung der Beugung am beliebigen (kantenfreien)Objekt mittels der Integralgleichungs-
methode. 

Um die Beugung von Schall und elektromagneti-
schen Wellen an großen Zylindern oder Kugeln 

zu berechnen, bedient man sich bis jetzt zweier ver-
schiedener Methoden: entweder man ermittelt die 
in der Umgebung der geometrisch-optischen Glanz-
stelle der Oberfläche reflektierte Strahlung mittels 
der Kirchhoffschen Beugungsformel oder man ver-
wandelt die strenge Reihenentwicklung der Green-
schen Funktion nach Bessel-Funktionen in ein 
Integral, und dieses nach W'atson 1 in eine Resi-
duensumme über die Nullstellen der Hankel-
Funktionen bzw. ihrer Ableitungen oder einer 
geeigneten Linearkombination. Die letzte Me-
thode hat den Nachteil, daß die Summe über 
die „Residuenwellen" (s. B r e m m e r 2 ) nur dann 
praktisch brauchbar ist, wenn die Lichtquelle für 
den Beobachter geometrisch unsichtbar bleibt — 
im anderen Fall werden die aufeinanderfolgen-
den Residuenwellen zu Anfang der Reihe ex-
ponentiell größer. Die Anwendung der geometri-
schen Näherung andererseits hat gerade im Fall 
einer geometrisch sichtbaren Lichtquelle Sinn, je-
doch liefert sie nicht die praktisch bei nicht allzu 
großen Objekten auftretenden Maxima und Minima 
der Intensität als Funktion des Abstands oder des 
Winkels. Eine Brücke zwischen den beiden erwähn-

1 G.N. W a t s o n , Proc. Boy . Soc. A 9 5 , 83, 546[1919]. 
2 H. B r e m m er , Terrestrial radio waves, Elsevier 

Publ. Comp. 1949. 
3 V\*. F r a n z u. K. D e p p e r m a n n , Ann. Phys. 10, 

361 [1952] (als I zitiert). 
4 A. S o m m e r f e l d , Vorlesungen, Bd. VI , Leipzig 

1947; s. Kap. V, Anh. 2. 
5 Nach Fertigstellung der vorliegenden Arbeit er-

schien ein Aufsatz von I s a o I m a i 6 , in welchem für 

ten Methoden wird durch die ,,semi-asymptotische" 
Entwicklung geschlagen, welche von D e p p e r -
mann und mir angegeben wurde3. Sie ergibt einer-
seits im Schatten in Gestalt unserer „Kriechwellen" 
genau die Watson-Bremmerschen Residuenwellen, 
im Licht die geometrisch-optische Näherung zuzüg-
lich der aus der Schattenseite in die Lichtseite des 
Objekts hinübergewechselten Kriech wellen. Daß die 
Berücksichtigung der Residuen wellen neben der geo-
metrischen Welle im geometrisch beleuchteten Ge-
biet nicht etwa eine inkonsequente Näherung ist, 
soll in der folgenden Untersuchung gezeigt werden; 
wir werden dabei den exakten Ausdruck für die 
Greenschen Funktionen streng in zwei Summanden 
zerlegen, deren einer asymptotisch der geometrisch-
optischen Näherung ohne die erwähnten Maxima 
und Minima entspricht, während der andere die 
Kriech wellen liefert. Für den Schattenraum erhalten 
wir in dieser Weise genau die von S o m m e r fe 1 d 4 an-
gegebene Gestalt der Greenschen Funktion, während 
wir im Lichtraum die dort praktisch unbrauchbare 
Sommerfeldsche Darstellung durch eine andere er-
setzen, deren Brauchbarkeit wir bereits in I durch 
die Erklärung der bei den Limbachschen Messungen 
am Zylinder auftretenden Maxima und Minima er-
wiesen haben5. 

die Beugung der ebenen Welle am Zylinder dieselbe 
Darstellung mittels der Watson-Transformation neu 
hergeleitet wird. Seine Formeln stimmen mit unseren 
Ergebnissen überein, jedoch sind die numerischen 
Werte in (7. 8), (7. 18), (7. 22), (8. 16) fehlerhaft, s. 
unsere Tab. 1 und 2. — Z u s a t z b. d. K o r r . : Im 
Gegensatz zu I m a i möchten wir betonen, daß auch 
unsere frühere Herleitung deduktiv, und nicht „unter 
Bückgriff auf physikalische Überlegungen" gewonnen 
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Um die Grundgedanken der folgenden Darstel-
lung klar zu zeigen, werden wir zunächst einen be-
sonders einfachen Fall behandeln, nämlich die Er-
regung in der Oberfläche eines schallweichen Zylin-
ders infolge einer einfallenden ebenen Primärwelle. 
In den späteren Abschnitten werden dann die all-
gemeinen Greenschen Funktionen für Zylinder und 
Kugel angegeben. 

1. Erregung auf beugendem schallweichen Zylinder 

Wir führen Zylinderkoordinaten Q, cp ein. Aus der 
Richtung cp = 0 möge primär eine ebene Welle 

p—ikgcosip un = e 
+ 00 

z i~m eim(p Jm (kg) (1) 

einfallen, k bedeutet die Wellenzahl 2nß. Wegen der 
in (1) mitangegebenen Entwicklung der ebenen 
Welle nach Bessel-Funktionen (s. M a g n u s - O b e r -
h e t t i n g e r 7 S.27) lautet die Lösung des Beugungs-
problems mit der Randbedingung u = 0 bei g = a 

+ 00 

U= S 1 
m=—oo 

eimv>[Jm(kg) Jm (fc«) 
Hl 1) (ka) Wik) 

(2) 

Des weiteren soll uns in diesem Abschnitt nur die 
Normalableitung der Erregung in der Oberfläche 
selbst beschäftigen, also nach (2) 

du 2 - ( « ) = - — cn ma 
^ gim (<p—nj 2) . 

H(i)(ka) (3) 

Hierin wurde benützt, daß die Wronskische Deter-
minante der beiden Hankel-Funktionen H{£> (ka), 

(ka) gleich 4/ijcka ist. Gl. (3) läßt sich in be-
kannter Weise als Residuensumme des folgenden 
Integrals auffassen: 

du 1 
— (o) = on x 7ia 

(C) 

Abb. 1. Integrationsweg 
für die Summation der 

Zylinderfunktionen. 

dv exp [iv (cp— 3jr/2)] 
H^) (ka) (4) 

© 

Achse verlaufenden Teil des Integrationswegs — v 
als neue Variable ein, so erhält man wegen H {}} — 
einvH{1) 

du 2 
cn v ' na 

dv v n cos v (cp,— n) 
2 m)(ka) (5) 

(D) 
Die Integration läuft nunmehr über den Integra-
tionsweg D (Abb. 2), oberhalb der reellen Achse. 
Der Integrand besitzt im positiv Imaginären eine 
Polreihe an den Nullstellen der Hankel-Funktion 
Hj,1' (ka); sie verläuft rechts oberhalb des Punktes 
v = ka in den ersten Quadranten hinein. D kann zu 
einem Umlauf um diese Polreihe deformiert werden, 

© Polreine 

Abb. 2. Umformung des Integrationswegs in einen 
Umlauf um die Nullstellen der Hankel-Funktion. 

da der Integrand im Unendlichen wegen des Fak-
tors 1 / H ^ außerhalb der Polreihe stärker als eine 
Exponentialfunktion verschwindet. Gl. (5) läßt sich 
dann durch die Residuensumme an den Polen Vi 
ersetzen, sofern diese konvergiert: 

du 
— ( a ) = — 4i cos Vj ((p — n) exp[—ivt7r/2] 

affd) (ka) V 
dv 

. (6) 

Der Integrationsweg C umläuft die reelle Achse (s. 
Abb. 1). Führt man in dem unterhalb der reellen 

Da die Residuen vom 1 / H ^ sich schwächer als lßfT 
verändern, hängt die Konvergenz der Summe nur 
davon ab, ob cosr (cp—:zr)-exp (—ir7i/2)/sin vre mit 
wachsendem Imaginärteil von v abnimmt oder nicht. 
Sie konvergiert dann und nur dann, wenn |cp—7i\ 
<n/2, also auf der Schattenseite des Zylinders. Auf 
der beleuchteten Fläche divergiert sie. Wir werden 
später sehen, daß bei einem in beträchtlicher end-
licher Entfernung gelegenen Quellpunkt die Reihe 
konvergent, jedoch praktisch unbrauchbar ist, da 
die Glieder anfänglich stark anwachsen. — Um eine 
auch auf der Lichtseite brauchbare Entwicklung 
aufzufinden, führen wir in (5) die folgende Identität 
ein: 

cos v (cp — 7i) = elvn cos vcp — ielvtp sin vn. (7) 

wurde; diese heuristischen Überlegungen dienten ledig-
lich zur Auffindung des Lösungsweges (auch für Imais 
und unsere Rechnung mittels der Watson-Transfor-
mation!) und Lösungsansatzes, um dann nachzuwei-
sen, daß die Ansätze zur Befriedigung der Integral-

gleichungen geeignet sind (wenn auch der Anschluß 
in der Schattengrenze schwierig ist). 

6 I s a o I m a i , Z. Physik 137, 31 [1954]. 
7 M a g n u s - O b e r h e t t i n g e r , Formeln und Sätze 

für die speziellen Funktionen der mathematischen 
Physik, 2. Aufl. Berlin 1948. 
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Dadurch entstehen zwei Summanden, von denen 
wir den ersten wieder in eine Residuensumme ver-
wandeln : 

exp [tUjjr/2] 

einsetzt und dann das Integral in der Umgebung des 
bei as = 7i/2—cp gelegenen Sattelpunktes auswertet: 

du 
dn ^ a ^yi sin V,TT. 

4i cos vx(p 
dmD (ka) (8) 

2 
ina 

exp [iv (cp — JT/2)] 
HW (ka) 

dv 
+ 00 

+ exp [iv (cp — jr/2] 
ffd) (fco) 

Die Summe konvergiert diesmal, wenn |<p| < Zjc/2, 

d. h. also im Lichtgebiet sowie im anschließenden 
Schattenbereich. Für den Schattenbereich wäre es 
unzweckmäßig, Gl. (8) an Stelle der viel einfacheren 
Gl. (6) zu benützen, für das Lichtgebiet dagegen ist 
Gl. (8) angemessen. Das Restintegral ist ein exakter 
Ausdruck für die in der Umgebung der Glanzstelle 
geometrisch reflektierte Welle. Man sieht dies so-
fort, wenn man für die Hankel-Funktion ihre 
asymptotische Darstellung ( s . M a g n u s - O b e r h e t -
t inger 7 , S. 33, b l ) 

. g—» 8 (<* cos, tx — sin a) -
(9) 

( c o s a = j ) 

(10) 
2ik cos <p-e-ikaco*v. 

Dies ist genau die geometrische Näherung. 
Die Abspaltung der Residuenwellen vor der 

asymptotischen (geometrisch-optischen) Auswer-
tung der Integraldarstellung (5) ist deshalb sinnvoll 
und konsequent, weil sie den Sinus im Nenner des 
Integranden beseitigt, dessen Pole gerade auf der 
reellen Achse liegen, wo wir die Sattelpunkte des 
Integrals (10) vorfinden. Bei einer direkten asymp-
totischen Auswertung von (5) würden wir einen 
mit cp und ka fluktuierenden Fehler begehen; durch 
die hier vorgenommene Aufspaltung (8) bewahren 
wir die Residuenwellen davor, im Fehler der 
asymptotischen Entwicklung unterzugehen. 

In dem folgenden Abschnitt wird sich herausstel-
len, daß die Residuenwellen identisch sind mit den 
Kriechwellen, welche in I für den Zylinder und in 
einer neueren Arbeit8 für die Kugel aus einer Inte-
gralgleichung abgeleitet wurden. 

2. Greensche Funktion des Zylinders 
Die Greensche Funktion der leeren Ebene ist 

GO (QvQ2><P) = T H O ] ( K Vo. I + QI — QI c o s <p) = T ^ e™'» (%) Jm (kQl) & < ß j (11) 
m = — oo 

(s. M a g n u s - O b e r h e t t i n g e r 7 , S. 31, Gl. 3b). Für die Greensche Funktion des Zylinders erhalten wir 
hieraus folgenden Ausdruck: + 00 , 

G ( & , & , ? ) = T 2 ^ H ^ ( k Q 2 ) [ j m ( k Q l 
OJm (ka) 
QH(i) (ka) (12) 

Darin bedeutet Q den Differentialoperator einer homogen-linearen Randbedingung; z. B. ist Q = 1 für 
den schall weichen Zylinder (elektromagnetisch: @ || Achse) und ü (x)F (x) = &F j&x für den schallharten 
Zylinder || Achse). Gl. (12) wollen wir wieder in ein Integral über C (Abb. 1) verwandeln. Indem wir 
für den in der negativen Halbebene verlaufenden Teil des Weges die neue Variable —v einführen, erhalten 
wir ein Integral über D : 

G = — 
C dv H^(ko ) 

4 J lüT^T C 0 S " to-** Öm (ka) (QH™ <*°> fe) - ÜJ* <*") feÖ- ^ 
(D)  v  

Im Anhang 1 wird gezeigt, daß der Integrand von (13) wegen der Eigenschaften der darin enthaltenen 
Zylinderfunktionen im Unendlichen in der positiv imaginären Halbebene stärker als exponentiell ver-
schwindet, sofern man sich im endlichen Phasenabstand von der Polreihe der Hankel-Funktion hält. Wir 
dürfen daher D in einen Umlauf um diese Polreihe deformieren und die Integrale in die Summe der Re-
siduen verwandeln, sofern sie konvergiert: 

in SP cosvl(<p — rc) H^I (ko-T) H^j (Ko2) QJJQ 
G 

4 Y 
r?>(*«). (14) 

— (ka) 
CV V / vi 

8 K. D e p p e r m a n n u. W . F r a n z , Ann. Phys. 14, 253 [1954]. 
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Mit Hilfe der Wronskischen Determinantenbezie-
hung kann man an Stelle von ÜH[2) (ka) im Zäh-
ler einen linearen Differentialausdruck von (ka) 
in den Nenner bringen, um etwas bequemere Aus-
drücke zu erhalten (die im übrigen zu der bei S o m -
m e r f e l d 4 angegebenen Gestalt der Greenschen 
Funktion der Kugel analog sind); insbesondere 
ergibt sich für und Q(x) = djdx 

^-H{2Uka)= — l/ka-H^'(ka), (15 a) 4 *7 7 ' n ' ' 

— H^'(ka) = + l/ka-H^(ka). (15b) 

Um die Konvergenz der Summe einzusehen, be-
nützen wir, daß nach (A 7) längs der Polreihe v die 
folgende Darstellung durch einen positiven Para-
meter t zuläßt: 

exp (log 1 (16) 

Führen wir dies in die asymptotische Darstellung 
(A 4) ein, so erhalten wir als bestimmenden Faktor 
der Hankel-Funktion vom Argument kg 

* ? > < * , ) P ^ - j ^ ] . (17) 

8/8v(QH[}) (ka)) und 1/QHW (ka) verhalten sich 
an den Polstellen nach (A 4) wie 1 /][ t , und für den 
gesamten Summanden ergibt sich ein Verhalten wie 

exp I t ( \cp— 71 |—71 + ~ log (gi Qja~) 
log (2 tjka) (18) 

Im lim oo streben die Reihenglieder exponentiell 
dem Werte Null zu, sofern | cp—n\ <7t; überall außer 
in derjenigen Richtung, in welcher die Lichtquelle 
gelegen ist, konvergieren die Summen. Allerdings 
fangen die Reihenglieder erst an, kleiner zu wer-
den, wenn 

t< 
ka Q1Q2 (JT——7f| 

a2 (19) 

wir aus der Untersuchung des Anfangsteils der 
Reihe. Die zugehörigen r-Werte liegen nach For-
mel (A 17) des Anhangs in der Nähe von ka, 
und zwar in einem Abstand von der Größen-
ordnung (ka)1'3 in der Richtung eljr/3, besitzen so-
mit neben einem Realteil m ka einen Imaginärteil 
von der Größenordnung (ka)1'3, welcher positiv ist 
und von Glied zu Glied wächst. Das Verhalten der 
Hankel-Funktionen vom Argument kg wird nach 
den Debyeschen asymptotischen Formeln (s. Mag -
n u s - O b e r h e t t i n g e r 7 S. 33, b 1) bestimmt durch 
den Exponentialfaktor 

ikVl -a' —1 l'arcos 0/0 

Der positive Imaginärteil von v bewirkt, daß dies 
mit wachsender Nummer der Polstellen expo-
nentiell größer wird. Die Reihenglieder von (14) 
können daher nur dann abnehmen, wenn die winkel-
abhängigen Faktoren für entsprechende Kompen-
sation sorgen, also 

g—i v(| jz— <p j — 7t + arcosa/ß! + arcos a/g2) 

mit wachsendem Imaginärteil von v kleiner wird, 
d. h. 

a a 
arcos f- arcos b I ®—71 <71. (20) 

.Qi Q2 Y 

Wie aus der beistehenden Abb. 3 zu entnehmen ist, 
bedeutet dies gerade, daß Px und P2 füreinander 
nicht geometrisch sichtbar sind. Im Schatten ist 
also die Reihe rasch, im Licht dagegen sehr spät 

da erst dann der Exponent von (18) negativ wird. 
In der Nähe der Einfallsrichtung wird der Expo-
nent von (19) beliebig groß, und damit auch der 
Wert von t und somit die Anzahl der erforder-
lichen Reihenglieder von (14). Mit wachsendem 
Beugungswinkel konvergiert die Reihe schneller, 
wird jedoch praktisch erst dann brauchbar, wenn 
die Reihenglieder von Anfang an rasch abnehmen. 
Die hierfür nötigen Beugungswinkel erschließen 

Abb. 3. Geometrische Deutung der Konvergenzbe-
dingung für die Residuensumme. 

konvergent. Praktisch kommt es allein auf das 
Verhalten der ersten Reihenglieder an, so daß 
Gl. (14) nur außer Sicht brauchbar ist und wir 
uns für den Sichtfall nach einer anderen Formel 
umsehen müssen. Das Rezept dazu ist in § 1 be-
reits enthalten; wir spalten mittels Gl. (7) von 
(13) einen Teil ab, welcher von dem Nenner sin vtz 
frei ist und der geometrisch reflektierten Welle 
entspricht: 
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Q = y cos vl(p eiVi„ (fegl)H(,y (**,) (jfca) 

4 4-J sin v, ti d _ / l / / 9 n 
ov >' / »7 

• +00 . # ( D (fco,) 

+ ¥ I A g a ) <*«) / / ( ,2 ) ( % ) - <*«) ^ (%) )• 

An Stelle der Bedingung (20) ergibt sich jetzt 
a a 

arcos h arcos f- \cp\ < 2TI. (22) 
62 

Dies ist im gesamten Bereich \<p \ <71 erfüllt, interes-
siert aber natürlich nur für das Sichtgebiet, da 
außer Sicht die einfachere Reihendarstellung (14) 
möglich ist. 

Es sei hier darauf verzichtet, nachzuweisen, daß 
in der Tat der geometrische Anteil die übliche Ge-
stalt der reflektierten Welle neben der Primärwelle 
enthält, da hierauf an anderer Stelle genauer ein-
gegangen werden soll9. Doch wollen wir die asym-
ptotische Gestalt der ersten Kriech wellen für Q = 1; 
d /dx kurz angeben. Wir drücken zunächst die in 
den Nennern stehenden Hankel-Funktionen von ka 
mittels der Formel (A 14) des Anhangs 1 durch das 
Airysche Integral aus, dessen Argument vermittels 
Gl. (A 16) mit v zusammenhängt. Die Nullstellen 
der Hankel-Funktion H ^ (ka) bezeichnen wir mit 
Vi, die ihrer Ableitung mit i'j, die zugehörigen Argu-
mente des Airyschen Integrals mit qt bzw. qt. Es 
gilt somit 

HW' (ka) = 0, (ka) = 0, (23) 
A' (qt) = 0, A fo) = 0. 

Die Ableitungen von Hv nach dem Argument 
führen wir auf Ableitungen nach dem Index zurück 
vermittels der Gleichung 

cH[V (x) (x) 
dx 8v ' 

welche man etwa aus der Rekursionsformel 

durch Taylor-Entwicklung um die Stelle v erhält. 
Für (14) ergeben sich damit die folgenden asym-
ptotischen Formeln der Kriech wellen: 

ti2 ( ka V/3 . „ v i cos v, (cp — 71) 
Gkl — — -elJl 3 / ^ (24) Kr 8 \ 6 / sin vi 71 v ' 

gl1 / (feei) Hvi (feg«) 
qt-A2 (qj 

— 71- / f c r tV /3 . ,„ v n COS Vi (w — 7l) 
Gkr TT " H 6 / ^ 2 4 a Kr 24 \ 6 J 1 sin vi ti 

HL1> (fco,) HLJ) (ko2) 

A'HTn) • 

Dies gilt für beliebige Werte der Abstände und 
sofern sie nur ^ a sind. Liegt Quelle oder Beob-
achter in der Zylinderoberfläche, dann kürzt sich 
eine Hankel-Funktion des Zählers von (14) gegen 
eine des Nenners; liegen beide auf der Zylinderober-
fläche, so fällt auch die zweite Hankel-Funktion im 
wesentlichen gegen die im Nenner stehende zweite 
Ableitung fort. Liegen beide Punkte in gebühren-
dem Abstand von der Zylinderoberfläche (nämlich 
so, daß ko—ka mindestens von der Größenordnung 
(ka)1'3 ist), so kann man wieder der Debyesche 
asymptotische Formel verwenden und erhält 

n ü —in 16 ( ka Y
/ a

 exp [ikVQ^ — q2 — jjr/4] exp [i k YQ%* — gZ — i 7114] y 
k ' V 6 J K f c l V - a 2 ' YkVgJ-a2 ' V 

exp [ivl 9?] + exp [ivl (271 — q>)~\ 
1 — exp [2 71 i vt] 

exp [— ivl (arcos alg1 + arcosa/g2)] 
qiA1 (qi) ' 

(25) 

— _7t_ i n l ( . ( ka V/3 exp [i k Kg,2 — a2"— in] 4] exp [i k — g} —in] 4] y i exp [ i ^ y ] + exp [ivt (2 7c — cp)] 

* ~ - 1 2 e [ ö ] Y W o r - a 2 ' Y W o ^ a * V l - e x p [ 2 n i v j 

exp [— iv , (arcos a o. + arcos alo2)] 
r n j i (2oa) 

9 Für ebene Primärwelle ist dieser Nachweis bei I m a i gegeben. 
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Man erkennt als Faktoren dieses Ausdrucks die 
von Px bzw. P2 zum Rand des sichtbaren (bzw. be-
leuchteten) Flächengebietes strahlende Zylinder-
welle, und weiter (unter der Summe) Phasenglieder 
mit Dämpfung (entsprechend dem imaginären An-
teil von v,) welche zurückgelegten Winkelstrecken 
von 

cp — arcos a/g1 — arcos ajg2 

bzw. 
2 n — cp — arcos a/g1 — arcos a/g2 

entsprechen. Ein Blick auf Abb. 3 lehrt, daß dies 
gerade die geometrischen Wegstrecken der beider-
seits an dem Zylinder entlangkriechenden Wellen 
sind, welche von P2 kommend die Oberfläche tan-
gential getroffen haben und sie in Richtung auf Px 

wieder verlassen. Somit ist die in I entwickelte Vor-
stellung über das Zustandekommen der Kriech-
wellen-Terme dem Ergebnis der Watson-Transfor-
mation in allen Einzelheiten angepaßt. Dies gilt 
sogar für den aus sin VTI entstandenen Nenner von 
Gl. (25); er ist identisch mit dem Nenner von I, 
Gl. (7), entstanden durch Summation der geometri-
schen Reihe derjenigen Kriech wellen, welche den 
Zylinder ein-, zwei-, drei- und mehrmals umlaufen 
haben. 

Die Kriechwellen des Sichtgebietes [Gl. (21)] 
unterscheiden sich von denen des Schattens nur 
durch leicht ersichtliche Modifikationen der Winkel-
funktionen, durch welche die „Kriechstrecken" fol-
gende Werte annehmen: 

2 ti cp — arcos ajgl — arcos a/g2 

bzw. 
2ti — cp — arcos a/g^ — arcos a/g2. 

Aus Abb. 4 ist zu ersehen, daß auch dies der geo-

Abb. 4 a und 4 b. Wegskizzen für die beiden Kriech-
wellen von P2 nach P1. 

Benutzen wir die in Anhang 1 gegebenen Werte 
von qu qt, A und A' und die Gin. (A 17 a, b) für v, 
dann ergeben sich für die Konstanten in (25) und 
(25a) die Werte der Tab. 1 und 2. 

V = ka+ein/3 (ka)1'3-0,808617 — e-i*/3(fca)-"3 •0,145463 
2,578096 0,200341 
3,825715 0,514009 
4,891820 0^818106 
5,851301 1,158348 

v = 1,855757 0,114794 
3,244608 0,350916 
4,381671 0,639968 
5,386614 0,967187 
6,305263 1,325211 

Tab. 1. Nullstellen von (ka) und H™ (ka) . 

ti/(4 • 61 '3 qA2) 7t/(12 • 61 '3 A ' 2 ) 

0,21607 0,12845 
0,11075 0,09793 
0,09055 0,08437 
0,08000 0,07613 
0,07312 0,07038 

Tab. 2. Koeffizienten der Kriechwellen in der 
Greenschen Funktion. 

Das Verhältnis der Kriech wellen (21) zur Primär-
welle G0 (genommen auf der Zylinderfläche an der 
Schattengrenze) wird 

GJGo = YZky^-a' e x p [ i k + i 7 t ' 1 2 ] 

_ exp [i vl (<p + TT)] + exp [i vl (n — <p)] 
' f 1 1 — exp \2niv{[ 

• exp [i vt (arsin a/g1 + arsin a/g2)] (25 b) 

mit den in Tab. 3 aufgeführten Koeffizienten C l 

bzw. Cj. 

Ct Ci 

1,53187 0,91072 
0,78520 0,69427 
0,64199 0,59820 
0,56719 0,53974 
0,51840 0,49897 

Tab. 3. 

Der Vergleich mit I zeigt, daß die dort in Gl. (59) 
und (60) angegebenen Koeffizienten bis 40% zu 
klein sind. Gleichzeitig sieht man die Ursache für 
diese Abweichung: die höheren Kriech wellen sind 
so stark, daß sie beim Anschluß des Sicht- an das 
Schattengebiet nicht beiseite gelassen werden dür-
fen, wie wir dies in I getan haben. In der Arbeit über 
die Kugel8 dagegen sind bereits die richtigen Koeffi-
zienten der Tab. 3 herangezogen worden, deren Be-
stimmung aus der Integralgleichung (durch An-
schluß der höheren Winkelableitungen von G) zu 
kompliziert wird; dies ist der Nachteil der Integral-
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gleichungsmethode, welche anderseits aber den Vor-
zug besitzt, auf beliebige Flächen anwendbar zu 
sein. Glücklicherweise hängt der Anschluß an der 
Schattengrenze nur von der Krümmung der tangen-
tiell getroffenen geodätischen Linie ab (in erster 
Näherung wenigstens) und kann daher vom Zylin-
der übernommen werden. Die Kriech wellen werden 
in der Schattengrenze der beugenden Oberfläche 
„geboren", und ihr „Geburtsgewicht" (bezogen auf 
Primärwelle 1) ist jijqA für u und (üi/ka)1 lzjzj2>A' 
für 1 /ik • dü/dn; diese Zahlenwerte sind in Tab. 4 
angegeben. 

Daß sie in der Tat nur von der geodätischen 
Krümmung abhängen, ergibt sich etwa daraus, daß 

sie für die Kugel ebenso gelten wie für den Zylin-
der. — Auf die Behandlung der Beugung an kon-
vexen Flächen mittels der Integralgleichung unter 
Benützung der angegebenen „Geburtsgewichte" 
gedenken wir demnächst zurückzukommen. 

u l/ik • 8u!8n 

1,83243 — -1,79678 • (i/ka)113 

— 0,73473 1,56880 
0,54538 — 1,45621 

— 0,45333 1,38324 
0,39627 — 1,32996 

Tab. 4. „Geburtsgewichte" der Kriechwellen 
(Primärerregung = 1 ) . 

3. Greensche Funktion der Kugel 

Die Greensche Funktion des leeren Raumes ist 

Darin sind rx und r2 die Abstände des Auf- und Quellpunktes vom Koordinatenursprung und # der Winkel 
zwischen ihren Radiusvektoren. Die Funktionen £ ( l ) und xp sollen in der Sommerfeldschen Bezeichnungs-
weise bedeuten 

W = j / ^ R n U (*) J Vn (*) = Jn + V2 (*)• (27) 

Die Formel für die Entwicklung nach Kugelfunktionen entnehme man etwa aus Magnus-Oberhettinger7 

Seite 31, Gl. (4a). Die Greensche Funktion der Kugel zur Randbedingung DG — O ist 

(C°S ^ ^ fan ( ^ l ) - Ü^Hka) ^ ( k r i ) ) * ( 2 8 ) 

Die Summe läßt sich wieder als Residuensumme eines Integrals auffassen: 

W (*») (ka) (kr,) 

© 

k C d/, m , V^(kr1)Q^Hka)-QfPtt{ka)^)(krl) 
G = + • * • (29) 

Da der Integrand eine ungerade Funktion von ju + 1/2 ist, kann die L 
Integration auf den bereits bekannten Weg D verlegt werden (s. Abb. 5), 
welcher in einen Umlauf um die Polreihe der Zylinderfunktionen des c7 
Nenners deformiert werden darf. So erhalten wir die Watsonschen Abb. 5. Integrationsweg für die 
Residuenreihen Summation der Kugelfunktionen. 

•7 ,„ . TXD / Q\ (fcr,)C(1) (kr.)Q^(ka) 
G - — y ( ^ + } (~cos . *i "1 v (30) 

8 4-1 sin u ,71 8 , / l f l —— QQ^ (ka) / 8/x / ßl 

Für ihre Konvergenz gilt genau dasselbe wie beim Zylinder; das bedeutet, daß (30) nur im Schattengebiet 
brauchbar ist. Um auch für das Sichtgebiet brauchbare Reihen zu erhalten, nehmen wir eine zu (7) ana-
loge Aufspaltung der Kugelfunktionen vor, welche in Gl. (A 38) (Anhang 3) angegeben ist. Dadurch 
entsteht 



712 W. F R A N Z 

G 
ik (2/xl -f 1) P„t (cos &) Cff (kr,) C<1> (kr2) Q?* (ka) 

l ,/ij n 

+ iA; 
Irr 

<*»>/* 
d/< ( 2 ^ + l ^ W ^ M v V 

(31) 

ßV/i(Ä» 0 H1 
0?(1) (fca) (fcr,) 

Die Residuensumme nimmt nunmehr auch im 
beleuchteten Gebiet rasch ab, während das Inte-
gral den geometrischen Anteilen entspricht und 
sich wegen des regulären Verhaltens des Integran-
den auf den positiven Teilen der reellen Achse 
gut asymptotisch auswerten läßt; dabei kann man 
den Integrationsweg über einen auf der positiven 
Achse zwischen 0 und ka liegenden Sattelpunkt 
führen, im übrigen verläuft die Rechnung im we-
sentlichen wie beim Zylinder (s. das Beispiel für 
die einfallende ebene Welle in § 1), da $(„2) asym-

ptotisch eine Exponentialfunktion ist, s. Gl. (A 39) 
des dritten Anhanges. 

Die Greensche Dj^ade des elektromagnetischen 
Falls läßt sich auf skalare Funktionen zurückfüh-
ren, welche sich von (28) nur unwesentlich durch 
die Gestalt der Funktionen von r2 und der Kugel-
flächenfunktionen unterscheiden, so daß sich die 
vorstehende Methode ohne weiteres überträgt. — 
Wir geben abschließend noch die asymptotischen 
Formeln für die Kriech wellen (31), spezialisieren 
dabei wieder auf Q (x) = d/dx und ü = 1, und setzen 
zunächst voraus sin 1/v: 

n ka -in 16 
r- 1 , q ,,, (kr.) (kr.) exp \x vl TI] cos (vl ir — nj4) >7 1 >7 v -

2r, r2 sin & l 

G kr ' 
71 

~24 
71 ka -11r/6 V e x P tt c o s (Vi® — 71!^ 

2rx r2 sin & cos TI 

(QI) 
HL1) (kr.) //'J) (kr,) vi 1 vi 

A'2 (qt) 

Liegen beide Punkte in einem Abstand, der groß gegen (ka)ll3/k ist, dann kommt 
exp [i k Yrx2 — a2] • exp [i k Yr22 — a2] 

G, kr 
ßinj 3 
4- 6% (ka) if 

k y rxr2 Yrx2 — a2 Yr22 — a2 

exp vl (& + 271) — i j + exp ĵ i vt (271 

•v 2 sin & 

1 v, | arcos — + arcos — r, r. 

(32 a) 

(32 b) 

(33 a) 

] 

1 1 H- e2nivi (h-12 ({h) 
einj 3 

12 • 6/3 A'2 (qt) • 
(33 b) 

Hier treten wieder die in Abb. 4 eingezeichneten 
Kriechstrecken in den Exponenten auf, und die 
Koeffizienten sind bis auf einen konstanten Faktor 
die der Tab. 2; doch ändern sich für (32 a) die Kor-
rekturen von r'j gegenüber Tab. 1 entsprechend 
Gl. (A 17 d) von Anhang 1. Die Zahlenwerte fin-
den sich in der ersten Spalte von Tab. 5 . In der 
zweiten Spalte sind dieselben Größen aufgeführt 
für die Randbedingung I?(x) = l+x'd/dx, welche 
im elektromagnetischen Fall auftritt. [Hierfür gilt 
(A 17 c)]. 

akustisch elektromagnetisch 

0,163707 
— 0,103370 
— 0,448662 
— 0,767000 
— 1,115022 

— 0,454033 
— 0,357312 
— 0,579350 
— 0,869212 
— 1,201073 

Tab. 5. Koeffizienten von e-£«/3 ka~113 in der asympto-
tischen Entwicklung der vt für die Kugel. 

Das Verhältnis der Kriech wellen zur Primärwelle 
G0 (wiederum genommen auf der beugenden Fläche 
in der Schattengrenze) ist 

G/G0 = -
(,ka)'/. l'r22 — a2 exp [i k ]rr\2 - a2 + i7i 12] 

r2 \2rx Yrx2 — a2 sin & 

exp [i vl (& + JT)] + i exp [i vt (71 — fl)] 
l 1 . i 1 + exp [2 ti iv^ 

n l vl l • a , • n \ larsin — + arsin —I 
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mit den Koeffizienten von Tab. 3. Die Übereinstimmung mit unseren früher aus der Integralgleichung 
abgleiteten Formeln 8 ist offenkundig. 

Ist v s i n $ nicht 1, also d nahezu 0 oder TI, dann gilt die Entwicklung (A 39) nicht, vielmehr treten 
asymptotisch Bessel-Funktionen des Arguments v sin & auf. Speziell für # = 0 (Rückstrahlung) werden die 
P / ( in (31) alle = 1 , und wir haben in (32), (33) und (34) einen Faktor /2 /7rr sin cos (v&—Jt/4) wegzu-
lassen. Statt (34) erhalten wir dann 

(ka)1/» | YrS —a2 exp [i k Vr^-^ä2 + iJr/3 y exp [i vt 7t] ivJ arsin—+ arsin—) 
( 0 / 0 o ) M = — Y ^ w m Y 1 l + e x P [ 2 ' < Tl 

(34 a) 

Auch dies stimmt genau mit unseren früheren Formeln iiberein (s. D e p p e r m a n n und F r a n z 8 , § 6). 
Daß die Kriechwellen auch bei der Kugel mit den in Tab. 4 aufgeführten Gewichten entstehen, leitet 

man leicht aus (32) ab. 

M a t h e m a t i s c h e A n h ä n g e 
A n h a n g 1 

Für positives Argument x und einen Index v mit 
positivem Real- oder Imaginärteil, der nicht zu nahe 
dem Werte x liegt, gilt für die Hankel-Funktion erster 
Art die folgende asymptotische Darstellung [s. etwa 
S o m m e r f e l d 4 , Gl. (21. 39)] 

HU)(x) 

mit 

sin [x (a cos tx — sin a) + n\4] 

(A 1) 

cos « = — ; 3 r n ( « ) < 0 ; J «Rc (a) | < n. (A 2) 

Ist |v|> x, somit |cos a|> 1, und £jm(a) < — 1, dann 
gilt genähert 

1 2v 
cos a ~ i sin a; a — log ; (A 3) 

% x 
und daher 

H>» (*> ~ - J / . A - • 2 • 6in j V (log - ^ + » x } • 
( A 4 ) 

Die Größenordnung der Hankel-Funktion wird damit 
im wesentlichen bestimmt durch die Phase von v. Mit 
v = t- eixf ist nämlich 

2 v \ f ( 2 t \ 
% 1 ) = £ cos xp I log 1 I — ip sin ip 

i 11 sin xp lo 
2t 

— 1 xp cos ip (A 5) 

Bei gegebenen t verschwindet der Realteil dieses Aus-
drucks für einen bestimmten AVinkel ipQ, der näherungs-
weise gegeben ist durch 

( l — i s s W ) - < A 0 ) 

Die zugehörigen r-Werte 
vn ~ t eixi'« 

groß wird, sondern im Gegenteil proportional 1/fv 
klein; auf ihr liegen die Nullstellen der Hankel-Funk-
tion. In endlichem Abstand von dem kritischen Pha-
senwert ip0 ~ 7i12 wird die absolute Größe der Hankel-
Funktion für hinreichend große t bestimmt durch 
einen Faktor 

2 t / 9 / \£|cos v'i <|cos xp|log 
( A 8 ) 

Hieraus folgt für das im Text auftretende Verhältnis 
der Hankel-Funktionen mit Argument ko2 und ka 

I a VI cos vi 
H<U (kn2)IHW (ka) ~ — . (A 9) 

Außer diesem Ausdruck wird noch der folgende ge-
braucht 

W}) (ka) Jv (kox) — Jv (ka) H^ (kQx). (A 10) 

Das Verhalten dieser Differenz wird einerseits durch 
das asymptotische Verhalten (A 4) bzw. (A 8) der 
Hankel-Funktion H ^ bestimmt, weiter aber dadurch, V ' 
daß es stets eine Linearkombination der beiden Hankel-
Funktionen gibt, bei welcher von dem sin-Ausdruck in 
(A4) nur der exponentiell kleine Anteil bestehen bleibt, 
und zwar ist dies im ersten Quadranten die Bessel-
Funktion, im zweiten Quadranten H&) -f- e 2 n i v I n 
(A 10) kann wegen der Differenzbildung an Stelle von 
J,, auch die letzte Kombination bei Bedarf eingefügt 
werden. Daher erweist sich das exponentiell (genauer: 
wie eine Fakultät) anwachsende stets als verbun-
den mit einem im selben Maße abnehmenden Faktor, 
und wir erhalten für (A 10) asymptotisch bis auf kon-
stante Faktoren 

1 f f a VI cos V'l / p, V l c o s ^ p 
(A 11) 

£»i 

( A I ) 

geben, dargestellt mittels des positiven Parameters t, 
diejenige im ersten Quadranten gelegene Linie an, 
längs deren die Hankel-Funktion nicht exponentiell 

Das Produkt von (A 9) und (A 11) strebt daher mit 
wachsendem t gegen 0, sofern g2> a und p, ist. Dieses 
Ergebnis läßt sich auf ÜH^ (ka) und ÜJv(ka) über-
tragen. 

Zur Bestimmung der kleinsten Wurzeln vl von 
(x) = 0 ist Gl. (A 1) nicht genau genug; diese 

liegen in der Nähe von v = x, wo sich die Hankel-Funk-
tionen asymptotisch durch die Zylinderfunktionen 
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vom Index 1 /3 bzw. das Airvsche Integral ausdrücken 
lassen. Der Zusammenhang sei hier kurz explizit ab-
geleitet. Die Sommerfeldsche Integraldarstellung 

> \ V ä • o vt = X + | —I + b) ^ 1 3 9 > 2 ) \20q 180 / 

HW (x) = i - | dxeixcoax+iv(*-T) (A 1! 

(A 17c) 
I X \1/3 • o V, = x + |—) e1Jl'3 

qi \xj \209 + 180 / • 
mit dem aus Abb. 0 ersichtlichen Integrationsweg S 
besitzt für v = x einen Sattelpunkt bei y = n!2. Indem 

Abb. 0. Integrationsweg für die 
Sommerfeldsche Darstellung der 

Hankel-Funktion. 

wir x = n/2 + t setzen und um t = 0 entwickeln, erhal-
ten wir 

in 13 e oo 
1 ' d (A 13) 

(A 17 d) 
Die asymptotische Lage der Nullstellen für große <y 
entnehmen wir aus der asymptotischen Darstellung 
von (A 15), welche sich sofort durch Entwicklung des 
Exponenten um die beiden Sattelpunkte r = ±Yq]3 
ergibt: 

a i \ Yn A (q) 

v n 

Mit t = (O/a;)1^ erint3 r wird dies: 

— ^ f - • <8*>M [»(f-)"' - T] • 
Man entnimmt hieraus, daß 

~ 8 [if (z — T ) ] 3; 7 ^ 3 [ t [ 1 - T ) T 

(A 18) 

(A 19) 

(A 20) 

in 13 ~e co 

, oy/3 
H(U (x) • er-i"l 3-(—j -A{q). (A 14) 

1 = 1, 2, 3 . . . . 
Die ersten fünf Nullstellen beider Funktionen sowie 

die zugehörigen Werte der jeweils anderen sind in 
Tab. A 1 angegeben. Sie wurden teils aus den Potenz-
reihen, teils aus den asymptotischen Reihen berechnet 
und mehrfach kontrolliert. 

Darin ist A (q) das Airysche Integral 
+ 00 00 

dr • ei (? r3) = j" dr cos (r ! 

—oo 0 
A (q) 

und 
6 Vi — I . e-m/3 . („ 

Qi A (qi) Ii A' (qi) 
qr) (A 15) 1,409354 1,10080 3,372134 — 1,059053 qr) (A 15) 

4,084712 — 0,91272 5,895843 1,212955 
0,951780 0,82862 7,962025 — 1,300735 
8,889027 — 0,77902 9,788127 1,375076 

(A 10) 10,032519 0,74502 11,457423 — 1,430780 

Nennen wir vt die Nullstellen der Hankel-Funktion 
H^l [x) und qi die Nullstellen des Airyschen Integrals, 
dann ergibt sich aus (A 10) der Zusammenhang 

(A 17) 

Derselbe Zusammenhang besteht auch zwischen den 
Nullstellen der Ableitungen von H ( 1 ) bzw. v o n A , wel-
che wir Vi und qx nennen. 

Für die Berechnung der Beugung an mäßig großen 
Objekten ist (A 17) nicht genau genug; wir müssen 
(wie bereits in I) ein Glied proportional hinzu-
fügen : 

x + 

Tab. A 1. 

A n h a n g 2. Z u s a m m e n h a n g z w i s c h e n der B e -
r e c h n u n g der D ä m p f u n g aus der W a t s o n -
T r a n s f o r m a t i o n und aus der I n t e g r a l g l e i -

c h u n g 1 0 

Die Dämpfung der Kriechwellen bestimmt sich nach 
der Watson-Transformation aus den Nullstellen der 
Hankel-Funktion und ihrer Ableitung bzw. einer 
Kombination dieser beiden. Asymptotisch für große x 
führt dies auf die Nullstellen des Airy-Integrals (A 15) 
und dessen Ableitung. Anderseits haben wir die Dämp-
fung in I aus der Integralgleichung bestimmt, und 
dabei an Stelle von [s. (A 17)] den folgenden Aus-
druck erhalten 

,x\V3 . Q_ /6\% . <ii 
(A 17a) 

(A 17b) 

K, p—in! 3 
24 (A 21) 

Im Falle der Kugel interessieren die Nullstellen v t von 

(YxH[}Hx))' und Vi von [H^(x ) !Yx] ' : 

10 Die Anregung zu der vorliegenden Beweisführung 
geht auf eine Diskussionsbemerkung von H. B r e m -
mer auf dem Mc Gill-Symposium über Mikrowellen-

Darin sind die <xt die Wurzeln von 
_ 0 0 

F (<%) = 1 — i J d* tv.I cM-t> = 0. (A 22) 
o 

optik (Montreal 1953) zurück. Ich darf Herrn Dr. 
Bremmer an dieser Stelle auch für eine schriftliche 
Diskussion des Gegenstandes danken. 
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Um den Zusammenhang zwischen dieser Bestimmungs-
gleichung und dem Airyschen Integral herzustellen, 
betrachten wir das Integral 

/(«) = / dt t-Vz-e*1-1*. 
o 

Aus der offenkundig richtigen Beziehung 

j d t — (tK e«'-t°) = 
ö 

folgt für / die Differentialgleichung 

/ ' " ( < * ) - y / ' ( « ) - - ^ - / ( « ) = 0. (A 24) 

Das Airysche Integral (A 15) dagegen genügt ersicht-
lich der Differentialgleichung 

(g) + f A (9) = 0 . (A 25) 

Die allgemeine Lösung hiervon setzt sich linear aus 
zwei der drei Funktionen A (q), A (e± 2 m/3 . q) zusam-
men. Das Produkt zweier Lösungen Ax (q) und An (q) 
von (A 25) genügt der Differentialgleichung 

(Ar A2Y" + ( A 1 A 2 ) ' + A1A2 = 0, (A 26) 

und hieraus folgt, daß 
- I eijl '3 \ I \ 

(A 27) 

eine Lösung von (A24) ist; da Ax2, A22 und Ax A2 linear 
unabhängig sind, sofern A 1 und A 2 unabhängige Lö-
sungen von (A25) sind, haben wir damit sämtliche 
Lösungen von (A24) gefunden. Um zu ermitteln, mit 
welchen Koeffizienten diese Lösungen in der speziellen 
Funktion / (a ) von (A 23) kombiniert sind, entwickeln 
wir unsere Funktionen nach kleinen Argumentwerten 
und vergleichen die ersten drei Koeffizienten. Man er-
hält durch Taylor-Entwicklung von exp (±iqr) bzw. 
exp (txt) in den Integranden von (A 15) bzw. (A23) 
unmittelbar 

-4l" ) = w ( / , ( T ) + "i'(|-) + 0 ("3)) ' (A28) 

><°>=t H l ) 
(A 29) 

Unter Benutzung des Multiplikationstheorems der / ' -
Funktion in Gestalt der Beziehungen (s. Magnus-
Oberhettinger7, S. 1) 

= U • 4 

r|—| r\—| = u 

sowie des Ergänzungssatzes 

rl 

" ' ( t ) -

? H i ) - * 
n/V 3 

verifiziert man nunmehr leicht, daß 
gin/S \ / ß—in 3 

/ («) = 4'/. — A 4% •A 4% (A 30) 

(A 23) Wir können jetzt F (a.) aus Gl. (A 22) durch /(<x) aus-
drücken : 

vi \ i " I/ '3 d / ( a ) 

oder mit (A 30) 

F(a) = 1 + - M uz L 
eijt/3 4 ' 

4 V'i a. A 
g—in/S 

4 Ys 

(A 31) 

a (A 32) 

+ e~inIZ A 
gin/S 

4 ' / 3 
a A' 

g—injZ 

1 
Hieraus können wir die Ableitung des zweiten Airy-
Integrals eliminieren mittels der Beziehung für die 
Wronskische Determinante. Aus (A 25) ergibt sich, 
daß die Wronski-Determinante zweier Lösungen eine 
Konstante ist, und ihr Wert kann aus dem höchsten 
Glied der Entwicklung (A 28) abgelesen werden: 

^nilZ-A (q)A' (g—2m/3 q) —A' [q)A (e~2m/3 .q ) (A33) 

= pin 16 
6 ' 

Damit erhalten wir 
12 

F («) e-ixl e-A' 
gin!3 
4M. a] A 

/ g—in/S 

V~4 
m IS \ 

(A 34) 

Der Vergleich von (A 17) und (A21) zeigt, daß die 
Nullstellen des ersten Faktors denen von H ^ ' ( x ) ent-
sprechen [vgl. (A14)], während der zweite Faktor das 
konjugiert komplexe der Nullstellen von lie-
fert, in Übereinstimmung mit I, § 6. 

A n h a n g 3. A u f s p a l t u n g u n d a s y m p t o t i s c h e 
D a r s t e l l u n g der K u g e l f u n k t i o n e n 

Wir benötigen im Text die folgende Aufspaltung der 
Kugelfunktion 1. Art in zwei 2. Art: 

Pv (cos &) = Qi-1) (&) + Q<2) ( 0 ) , { A 35) 

Abb. 7. Integrationswege für die Kugelfunktionen 
zweiter Art 

wobei die Funktionen 2. Art Q(J > für 9te(v) > — 1 
definiert sein sollen durch 

1 C dt 
2ni J t»+1Vl + t2 — 2tcos& 

in) 

. (A 36) 

Dabei soll für die der positiven Achse zugekehrten Teile 
der Integrationswege (s. Abb. 7) die Phase der Wurzel 
wie die von t dem Betrag nach kleiner als ti\2 sein. 
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(A 37) 

Man erkennt vermittels der Transformation t' = — t, daß 
zwischen den Funktionen Q<!> die folgenden Beziehun-
gen bestehen 

Q[ 1) (TC — fl) = Q<V2) (fl); 
(?'2) (.-T — fl) = (fl). 

Hieraus folgt, daß 

PV (—cos fl) = EI™PV (cos fl) — 2 I sin VTIQM (fl). (A 38) 

Hierdurch wird für alle v definiert; es bleibt bei 
ganzen Werten v = n ^ 0 regulär [entsprechend der In-
tegraldarstellung (A36)] , besitzt aber bei negativ 
ganzzahligen v Pole. 

Für 91e ( r )>—1 erhält man aus (A 36) asympto-
tische Formeln, indem man das Integral ersetzt durch 

das zweifache Integral von bis oo, und beachtet, 
daß für sehr große | v I der Betrag von t in einer Bich-
tung, in welcher der Integrationsweg verlegt werden 
kann, sehr steil abfällt, so daß der Beitrag nur aus der 
unmittelbaren Fmgebung des Endpunktes herrührt. 
Entwickelt man dort den Integranden, so ergibt sich 
für sin fl I jv 

exp 
Qn U f l ) ~ 

(?(2> (fl) ~ 

P „ (cos fl) 

2 Tiv sin fl 
I • ( M Tel 

exp T + y J 
1 2 TI v sin fl 2 

cos ;i v 

(A 39) 

TIV sin fl t ' » - 7!' 

I 
Kristallisationsüberspannungen 

V o n W O L F G A N G L O R E N Z 

Aus dem Physikalisch-Chemischen Institut der Universität Leipzig 
(Z. Naturforschg. 9 a, 716—724 [1954]; eingegangen am 8. Juni 1954) 

Die Überspannungserscheinungen an Elektroden, bei denen Kristallisationsvorgänge 
geschwindigkeitsbestimmend sind, werden theoretisch behandelt. Abzuscheidende Metall-
ionen werden erst an Wachstumsstellen ins Metallgitter eingebaut. Dies ist auf zwei Wegen 
möglich: Entweder werden die Ionen nur an Wachstumsstellen entladen, oder sie werden 
an allen Stellen der Metalloberfläche entladen und gelangen als adsorbierte Atome durch 
Oberflächendiffusion zu den Wachstumsstellen. Für beide Fälle wird die stationäre 
Strom-Spannungskurve (Gleichstrompolarisation) und die Polarisationsimpedanz (Wech-
selstrompolarisation) angegeben. Die Ergebnisse sind experimentell prüf bar, der Vergleich 
zwischen Theorie und Experiment läßt gewisse Rückschlüsse auf die an der Phasengrenze 
Metall/Elektrolyt herrschenden Verhältnisse zu. 

Bei Stromfluß durch eine Elektrode ändert 
sich das Elektrodenpotential , die Elektrode 

wird polarisiert. Die Potentialänderung gegenüber 
dem Gleichgewichtspotential bezeichnet man als 
Überspannung. Wir betrachten im folgenden Me-
tallelektroden Me in Elektrolytlösungen, welche 
Me z + als durchtrittsfähiges Ion enthalten; ferner 
soll Konzentrationspolarisation in Elektrolyten 
experimentell von vornherein ausgeschlossen sein. 
Bekanntlich werden dann unter sonst gleichen Be-
dingungen feste Metallelektroden meist um Grö-
ßenordnungen stärker polarisiert als flüssige Elek-
troden (Quecksilber, Amalgame) . Man hat diesen 
Unterschied schon seit langem auf den mit der 

1 H. B r a n d e s , Z. phvs. Chem. A 142, 97 [1929]; 
T. E r d e v - Gruz u. M . V o l m e r , Z. phvs. Chem. A 157, 
165 [1931]; M. V o l m e r , Phvsik. Z.' UBSS. 4, 346 
[1933]. 

l a M . V o l m e r , Das elektrolytische Kristallwachs-
tum, Paris 1934. 

l b M . V o l m e r , Kinetik der Phasenbildung, Stein-
kopff, Dresden 1939. 

Elektrolyse fester Metallelektroden einhergehen-
den Kristallwachstums- oder -abbauprozeß zurück-
zuführen versucht. In dieser Hinsicht sind beson-
ders die Arbeiten v o n V o l m e r und Mitarb.1 zu 
nennen, die bis in die jüngste Ze i t 2 grundlegend 
blieben. 

U m die bisherigen, auf zahlreiche vereinzelte 
Beobachtungen gestützten Vermutungen entweder 
sicherzustellen oder zu widerlegen, ist es notwendig, 
die möglichen Kristallisationseffekte theoretisch 
genauer zu analysieren. Ein Vergleich zwischen der 
z. Tl. schon vorliegenden, z. Tl. im folgenden 
weiterentwickelten Theorie und neuen experimen-
tellen Befunden weist darauf hin, daß bei einigen 

2 Z. B. bei Fr. M ü l l e r , Z. Elektrochem. 43, 812 
[1937]; J. A. V. B u t l e r , Electrocapillarity, London 
1940, S. 168 f.; G. E. G a r d a m , Disc. Faraday Soc. 1, 
182 [1947]; IL F i s c h e r , Z. Metallkde. 39, 101 [1948]; 
J. A. V. B u t l e r , Electrical Phenomena at Interfaces, 
London 1951, S. 200 f . ; W. L o r e n z , Z. phys. Chem. 
202, 275 [1953]. 


